期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
基于ICEEMDAN算法的高速双圆弧斜齿轮泵振动试验特性分析
1
作者 董庆伟 李博 +2 位作者 李阁强 韩帅康 皇甫科维 《机床与液压》 北大核心 2025年第4期151-157,共7页
针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分... 针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分析。在此基础上,基于增强型完全集合经验模态分解(ICEEMDAN)算法对数据进行特征提取,通过模糊熵与峭度构建的综合指标选取内在模态函数分量(IMF)进行分析,得到双圆弧斜齿轮泵在不同转速和压力负载工况下的振动特性。结果表明:在所测工况下,出油口区域的振动幅度普遍高于进油口和泵体上侧区域,而且压力负载对泵的振动分布具有一定影响;在恒定压力负载下,泵的振动幅值随转速的提高而增加,且这种增长随转速的提高而加剧;在恒定转速下,泵的振动幅度整体趋势随着压力负载的增加而上升,但在特定压力负载点出现下降。 展开更多
关键词 斜齿轮泵 高速工况 振动特性 增强型完全集合经验模态分解(iceemdan)算法
下载PDF
基于改进蜣螂优化算法和融合注意力机制的风电功率预测
2
作者 张旭东 汪繁荣 《广东电力》 北大核心 2025年第1期32-40,共9页
为进一步提高风电功率的预测精准度,提出使用自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)来对原始数据进行分解,并结合多策略改进蜣螂优化算法(multi-strategy enhan... 为进一步提高风电功率的预测精准度,提出使用自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)来对原始数据进行分解,并结合多策略改进蜣螂优化算法(multi-strategy enhanced dung beetle optimization algorithm,MDBO)来优化融合了卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络的风电预测方法。首先,使用CEEMDAN分解算法对初始风力发电功率进行分解,以降低风电数据的非线性和随机性;之后,在预测模型中引入注意力机制(attention mechanism,AM),对分解得到的各分量分别使用经MDBO算法寻优得到的CNN-BiLSTM-AM模型进行预测;最后,把各子分量的预测值进行叠加聚合得到总的预测值,并采用皮尔逊相关系数计算环境特征对风电功率的相关性,保留相关性强的环境特征以进一步提升预测精度。使用所提CEEMDAN-MDBO-CNN-BiLSTM-AM算法进行风电功率预测,预测结果有着较高的预测精准度,其均方根误差较CNN和BiLSTM单一预测模型分别降低了65.12%和64.00%,相较于CNN-BiLSTM其均方根误差和平均绝对误差分别降低了53.20%和53.98%,其回归系数提升了7.581%。 展开更多
关键词 自适应噪声完全集合经验模态分解 风电功率预测 蜣螂优化算法 双向长短期记忆网络 卷积神经网络
下载PDF
基于ICEEMDAN和SSA-LSTM组合模型的电离层TEC预测
3
作者 张振国 孙希延 +1 位作者 纪元法 贾茜子 《全球定位系统》 2025年第1期48-59,共12页
针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(impr... 针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(improved complete ensemble EMD with adaptive noise,ICEEMDAN)和样本熵(sample entropy,SE)算法的基础上,结合麻雀搜索算法(sparrow search algorithm,SSA)和LSTM构建电离层TEC组合预测模型,并对太阳活动低年平静期和太阳活动高年扰动期电离层TEC连续5 d的预测精度分析.实验结果表明,本文组合模型相较于单一LSTM模型和SSA-LSTM模型在低太阳活动平静期和高太阳活动扰动期的不同经纬度下,均方根误差(root mean square error,RMSE)分别最大降低1.06 TECU和2.25 TECU,平均绝对误差(mean absolute error,MAE)分别最大降低了0.74 TECU和1.68 TECU,平均相对精度分别最大提升了7.63%和8.97%,组合模型的预测效果要明显优于单一LSTM模型和SSA-LSTM模型. 展开更多
关键词 电离层 总电子含量(TEC)预测 改进的自适应噪声完备集合经验模态分解(iceemdan) 样本熵(SE) 麻雀搜索算法(SSA) 长短期记忆神经网络(LSTM)
下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:2
4
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(iceemdan) 多尺度排列熵 信号降噪
下载PDF
基于ICEEMDAN和共振解调的轴承故障检测方法
5
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 带自适应噪声的改进完全集合经验模态分解(iceemdan) 共振解调 快速峭度图 形态学滤波
下载PDF
基于ICEEMDAN-DCN-Transformer的短期电力负荷预测
6
作者 芦志凡 赵倩 《沈阳工业大学学报》 CAS 北大核心 2024年第4期388-396,共9页
针对传统负荷预测方法易受复杂环境因素影响的问题,提出了基于ICEEMDAN-DCN-Transformer的短期电力负荷组合预测模型,该模型将电力负荷数据通过ICEEMDAN方法分解为若干个IMF和一个Res函数,考虑复杂环境因素的影响,将分解后各分量与环境... 针对传统负荷预测方法易受复杂环境因素影响的问题,提出了基于ICEEMDAN-DCN-Transformer的短期电力负荷组合预测模型,该模型将电力负荷数据通过ICEEMDAN方法分解为若干个IMF和一个Res函数,考虑复杂环境因素的影响,将分解后各分量与环境特征并行输入到DCN-Transformer中进行预测,并将各组预测数据线性相加得到完整的预测结果。以泉州市电力负荷历史数据为基础进行实验,建立4种单一预测模型和3种组合预测模型作为对比模型,对该地10 d、240 h的电力负荷序列加以预测。结果表明,相较于传统算法,所提算法可以显著提高负荷预测的精度并有效降低误差评价指标值,为电力系统的安全运行和规划制定提供理论依据。 展开更多
关键词 电力负荷预测 改进型完全自适应噪声集合经验模态分解算法 深度交叉网络 预测精度 短期负荷 组合预测模型 误差评价
下载PDF
基于多层信号分解的混凝土拱坝变形监测模型
7
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
下载PDF
基于改进HHO算法的碳交易价格组合预测研究 被引量:2
8
作者 赵峰 徐丹华 《西安理工大学学报》 CAS 北大核心 2023年第3期330-338,共9页
为提高碳交易价格预测精度,建立了多策略改进哈里斯鹰算法的碳交易价格组合预测模型。一方面对碳交易价格序列的高频和低频序列分别建立ARIMA模型和指数平滑模型,通过加和对碳交易价格进行预测。另一方面综合考虑碳交易价格的经济指标... 为提高碳交易价格预测精度,建立了多策略改进哈里斯鹰算法的碳交易价格组合预测模型。一方面对碳交易价格序列的高频和低频序列分别建立ARIMA模型和指数平滑模型,通过加和对碳交易价格进行预测。另一方面综合考虑碳交易价格的经济指标和技术指标,通过Pearson相关系数筛选出6个与下一日碳交易价格高度相关的变量作为解释变量,建立多策略改进哈里斯鹰优化极限学习机模型(THHO_ELM)。最后,对模型I和模型II建立基于l_(p)范数的组合预测模型。结果表明,组合预测模型优于单一的分类模型。 展开更多
关键词 碳价格预测 完全自适应噪声集合经验模态分解 哈里斯鹰优化算法 极限学习机 l_(p)范数
下载PDF
基于误差补偿及IDBO-BiLSTM的风电功率短期预测
9
作者 魏振宇 姜雪松 杨立发 《科学技术与工程》 北大核心 2025年第6期2397-2405,共9页
针对风电出力稳定性差、随机性强而导致的模型精度差的问题。提出了一种基于二次分解误差补偿的风电功率短期预测模型。首先建立双向长短期记忆(bidirectional long short-term memory,BiLSTM)预测模型对风电功率进行预测并输出预测误... 针对风电出力稳定性差、随机性强而导致的模型精度差的问题。提出了一种基于二次分解误差补偿的风电功率短期预测模型。首先建立双向长短期记忆(bidirectional long short-term memory,BiLSTM)预测模型对风电功率进行预测并输出预测误差。其次,采用了一种利用混沌映射初始化种群、引入黄金正弦策略更新滚球蜣螂位置,并添加动态自适应性权重系数来更新偷窃蜣螂的位置的改进蜣螂优化算法(improved dung beetle optimizer,IDBO)对预测模型参数寻优,防止网络陷入局部最优解,自适应搜寻最优参数组合。然后,采用分解-重构-分解的策略,利用自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)进行首次分解,并且引入样本熵(sample entropy,SE)与K均值(K-means)将序列按频率进行重构并通过变分模态分解(variational mode decomposition,VMD)将高频误差序列分解成不同频段的误差序列,提高后续模型的预测效率及预测精度。最后,将各分量输入误差补偿模型进行预测并引入Attention机制学习不同时间步的特征关系,并给与不同权重值,加强对关键信息的注意力。通过新疆达坂城风电场实测数据验证了所提模型预测精度高,具有显著优势。 展开更多
关键词 风电功率短期预测 双向长短期记忆网络 改进蜣螂优化算法 完全集合经验模态分解 变分模态分解
下载PDF
基于ICEEMDAN-SE-MSGJO-LSTM-EC的短期风电功率预测
10
作者 刘志坚 孙瑞星 +2 位作者 黄建 张江云 何超 《电机与控制应用》 2023年第12期42-53,共12页
为了提高风电功率短期预测精度,本文提出了一种基于ICEEMDAN-SE-MSGJO-LSTM-EC模型的短期风电功率预测模型。首先,通过ICEEMDAN对原始风功率信号进行分解并通过样本熵计算熵值相近的分量相加重构。其次,建立MSGJO-LSTM预测模型,通过改... 为了提高风电功率短期预测精度,本文提出了一种基于ICEEMDAN-SE-MSGJO-LSTM-EC模型的短期风电功率预测模型。首先,通过ICEEMDAN对原始风功率信号进行分解并通过样本熵计算熵值相近的分量相加重构。其次,建立MSGJO-LSTM预测模型,通过改进金豺优化算法(MSGJO)优化LSTM网络参数,对各模态分量进行预测。最后,通过对各模态分量预测结果进行误差修正(EC)并将所有模态预测结果相加得到最终预测结果。以新疆某风电场为例,采用本文所提预测模型进行仿真分析,试验结果表明本文基于ICEEMDAN-SE-MSGJO-LSTM-EC的预测模型预测精度更高。 展开更多
关键词 风电功率预测 误差修正 改进自适应噪声完全集合经验模态分解 改进金豺优化算法 长短期记忆网络
下载PDF
基于CEEMDAN-ISSA-GRU混合的水质预测模型
11
作者 马倩倩 赵丽琴 +1 位作者 聂会 焦建格 《计算机仿真》 2025年第1期501-507,共7页
准确预测河流水质可以有效解决水污染防治和水质监管等问题。然而,由于水质序列具有非平稳性、随机性和非线性,导致预测精度较低。现提出一种基于完全自适应噪声集合经验模态分解(CEEMDAN)、模糊熵(FE)和改进的门控循环单元(GRU)混合的... 准确预测河流水质可以有效解决水污染防治和水质监管等问题。然而,由于水质序列具有非平稳性、随机性和非线性,导致预测精度较低。现提出一种基于完全自适应噪声集合经验模态分解(CEEMDAN)、模糊熵(FE)和改进的门控循环单元(GRU)混合的水质预测模型。首先采用CEEMDAN将水质序列分解为若干个本征模态(IMF),并以FE为判据重构IMF序列,实现降噪目的。然后,利用改进的麻雀搜索算法(ISSA)确定GRU的超参数,提高GRU模型的性能和泛化能力。最后,将降噪后数据输入到ISSA-GRU模型进行预测。实验结果表明,与比较模型相比,所提出的模型具有更好的预测精度和误差性能,RMSE、MAPE、MAE分别为0.2518、0.1824和1.9441%,比基线GRU模型分别降低了40.93%、46.29%、46.41%。 展开更多
关键词 水质预测 完全自适应噪声集合经验模态分解 模糊熵 门控循环单元 改进的麻雀搜索算法
下载PDF
考虑配电网三相电压特征的IHPO-CSSVM电压暂降源识别
12
作者 许超 李永刚 +2 位作者 张书伟 赵丽萍 赵会超 《电力需求侧管理》 2025年第1期101-106,共6页
随着分布式新能源和电力电子设备广泛接入配电网,能源供应和负荷需求等方面呈现出新的特点。考虑到支持向量机(support vector machine,SVM)算法的超参数选择困难以及电压暂降源信号数据类别不平衡等问题,提出了一种基于完全集合经验模... 随着分布式新能源和电力电子设备广泛接入配电网,能源供应和负荷需求等方面呈现出新的特点。考虑到支持向量机(support vector machine,SVM)算法的超参数选择困难以及电压暂降源信号数据类别不平衡等问题,提出了一种基于完全集合经验模态分解与自适应噪声(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进的猎人猎物优化代价敏感SVM(improved hunter-prey optimizer cost-sensitive SVM,IHPO-CSSVM)的电压暂降源识别方法。通过在Matlab/Simulink仿真平台模拟电路,获得不同类型的电压暂降源,利用CEEMDAN从需求侧电压暂降信号中提取三相电压的特征向量,并计算其近似熵,构建新的特征向量,输入到IHPO-CSSVM分类器进行训练。与SVM、CSSVM、极限学习机进行比较,仿真结果表明IHPO-CSSVM的识别准确率最高,该方法能够准确地从复杂的电压信号中提取出有用的特征,并通过优化模型参数来提升识别准确率,可以有效解决配网侧的电压暂降源识别问题。 展开更多
关键词 完全集合经验模态分解与自适应噪声 改进的猎人猎物优化算法 代价敏感支持向量机 配网侧电压暂降
下载PDF
基于ICEEMDAN-ICA-ELM的中国采购经理人指数预测研究 被引量:1
13
作者 相瑞兵 石亚男 马晓君 《统计与决策》 CSSCI 北大核心 2020年第3期27-32,共6页
文章引入机器学习算法,基于改进的带有自适应白噪声的完全集合经验模态分解(ICEEMDAN)-帝国竞争算法(ICA)—极限学习机(ELM),构建中国采购经理人指数预测模型,引入Diebold-Mariano统计量进行预测结果的比较。结果发现:ICEEMDAN技术可以... 文章引入机器学习算法,基于改进的带有自适应白噪声的完全集合经验模态分解(ICEEMDAN)-帝国竞争算法(ICA)—极限学习机(ELM),构建中国采购经理人指数预测模型,引入Diebold-Mariano统计量进行预测结果的比较。结果发现:ICEEMDAN技术可以准确提取数据中的有效信息,改进模型拟合效果;提出的组合模型ICEEMDAN-ICA-ELM预测效果优良,泛化能力强,误差较小,能够为PMI的走势提供新的预测方法。 展开更多
关键词 采购经理人指数 完全集合经验模态分解 帝国竞争算法 组合预测模型
下载PDF
基于ICEEMDAN-IPSO-ELM的硅油溶解气体浓度组合预测方法 被引量:4
14
作者 李长云 杨静雨 +3 位作者 连鸿松 郑东升 赖永华 刘慧鑫 《高电压技术》 EI CAS CSCD 北大核心 2023年第9期3887-3897,共11页
高压电缆充油终端作为电力系统中传输电能的重要设备,对充油电缆终端内填充的硅油溶解气体浓度进行可靠预测,可为硅油的故障诊断提供一定的支撑。因此,提出一种基于局部异常因子与ICEEMDAN-IPSO-ELM的硅油中溶解气体浓度预测模型。首先... 高压电缆充油终端作为电力系统中传输电能的重要设备,对充油电缆终端内填充的硅油溶解气体浓度进行可靠预测,可为硅油的故障诊断提供一定的支撑。因此,提出一种基于局部异常因子与ICEEMDAN-IPSO-ELM的硅油中溶解气体浓度预测模型。首先,搭建模拟电缆终端内部硅油老化实验平台,通过色谱分析获得硅油中溶解气体浓度序列,进而对硅油中溶解气体浓度时间序列进行数据清洗,采用局部离群因子检测方法判断异常值并进行合理的修正,进而采用改进自适应白噪声完全集合经验模态分解将修正后的硅油中溶解气体浓度序列进行分解,得到不同时间尺度的本征模态函数分量,可以有效降低高、低频分量间的相互影响;其次,针对具有不同特征的频率分量搭建极限学习机网络预测模型,针对极限学习机模型参数较难选取的问题,采用改进粒子群优化方法对模型的权值和阈值参数寻优求解,在一定程度上优化了粒子群方法的寻优能力,并提高了组合预测方法的可靠性;最后,将不同频率分量的计算结果加和,便可得到硅油中溶解气体浓度的预测含量。具体实例表明,与其他预测模型相比,该方法能够可靠预测出硅油中溶解气体含量的未来走势,为硅油故障诊断技术提供了有力的保障。 展开更多
关键词 高压电缆充油终端 局部离群因子 极限学习机 硅油中溶解气体 改进粒子群优化算法 改进自适应白噪声完全集合经验模态分解
原文传递
基于CEEMDAN-SG的爆炸冲击波去噪算法研究 被引量:3
15
作者 张冉 张鹏 赵锋 《国外电子测量技术》 北大核心 2022年第10期119-125,共7页
在采集爆炸冲击波超压信号时,由于监测的高温环境、压力传感器的误差以及磁场干扰,爆炸冲击波超压信号中混入了大量的噪声。为了准确地获取超压信号的特征,设计了一种基于融合完全集成经验模态分解与自适应噪声(CEEMDAN)与SG(Savitzky-G... 在采集爆炸冲击波超压信号时,由于监测的高温环境、压力传感器的误差以及磁场干扰,爆炸冲击波超压信号中混入了大量的噪声。为了准确地获取超压信号的特征,设计了一种基于融合完全集成经验模态分解与自适应噪声(CEEMDAN)与SG(Savitzky-Golay)去噪算法。首先使用CEEMDAN对爆炸冲击波超压信号进行分解,其次计算每个本征模态函数(IMF)的能量贡献率,利用SG滤波算法将能量贡献率低于0.1%且大于0.05%的IMF进行去噪处理。实验结果表明,CEEMDAN-SG与经验模态分解(EMD)、改进的集合经验模态分解(EEMD)、CEEMDAN以及CEEMDAN-小波阈值去噪所比较,信噪比分别提高了0.85、0.71、3.09、0.25 dB,且均方误差最小。CEEMDAN-SG与CEEMDAN-小波阈值去噪在去除噪声效果较理想,且CEEMDAN-SG在0.16 s时与原信号相似度最高。该算法不仅能有效去除噪声,而且还可以保留原始信号的特征,适用于爆炸冲击波超压信号的去噪处理。 展开更多
关键词 爆炸冲击波 完全自适应噪声集合经验模态分解与自适应噪声 能量贡献率 Savitzky-Golay去噪算法
原文传递
改进BBO优化BP神经网络的短期风电功率预测模型
16
作者 罗丹 章若冰 +1 位作者 余娟 谭芝娴 《绿色科技》 2024年第12期263-269,共7页
为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权... 为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权重优化,进一步提升短期风电功率预测的准确度和稳定性。通过实际应用案例表明,与其他优化算法相比,提出的模型在MAE、RMSE和MAPE上的表现分别平均提高了43.21%、37.98%和36.84%,显示出更高的预测准确度,仿真结果验证了本方法在短期风电功率预测领域的效果及其明显的优势。 展开更多
关键词 短期风电功率预测 完全自适应噪声集合经验模态分解 反向传播神经网络 生物地理学优化算法
下载PDF
考虑多尺度输入及优化CNN-BiGRU的短期负荷预测
17
作者 张宇航 冉启武 +1 位作者 石卓见 熊芮 《科学技术与工程》 北大核心 2024年第34期14679-14689,共11页
短期的负荷预测是市场规划的重要前提且能有效保障电力系统的安全稳定运行,由于电力负荷随机性强、波动性大等问题导致预测精度难以提高,针对于此,提出了一种基于CEEMDAN-PE-SSA-CNN-BiGRU的短期电力负荷预测方法。首先,对于复杂多变的... 短期的负荷预测是市场规划的重要前提且能有效保障电力系统的安全稳定运行,由于电力负荷随机性强、波动性大等问题导致预测精度难以提高,针对于此,提出了一种基于CEEMDAN-PE-SSA-CNN-BiGRU的短期电力负荷预测方法。首先,对于复杂多变的电力负荷数据采用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)为子序列,计算其子序列的排列熵(permutation entropy, PE),将熵值相近的子序列重构得到新序列,降低了原始数据非平稳序列对预测精度的影响并优化计算量;其次,对重组序列进行特性分析,根据重组序列不同周期进而选取多尺度输入并搭建CNN-BiGRU预测模型。最后,选用麻雀搜索算法(sparrow search algorithm, SSA)来优化模型超参数通过汇总所有预测序列从而得到最终预测数据。使用本文模型以西班牙用电负荷为实例并与单一模型和组合模型进行对比,实验表明该模型预测效果更佳。 展开更多
关键词 负荷预测 完全自适应噪声集合经验模态分解 排列熵 麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于CEEMDAN和LSTM的股指价格组合预测方法:来自5个国家的数据分析
18
作者 林昇铭 王嘉宏 +2 位作者 袁锦琛 曾莹萍 林持旺 《计算机科学与应用》 2024年第2期449-459,共11页
股票价格预测一直是研究者们挑战的领域。然而,现有的基于深度学习的预测方法在预测不同国家的股票指数时无法达到统一优秀的效果。因此,本文提出了一种名为CEEMDAN-PSO-LSTM的新模型来预测多个国家的股票指数收盘价。首先,我们使用完... 股票价格预测一直是研究者们挑战的领域。然而,现有的基于深度学习的预测方法在预测不同国家的股票指数时无法达到统一优秀的效果。因此,本文提出了一种名为CEEMDAN-PSO-LSTM的新模型来预测多个国家的股票指数收盘价。首先,我们使用完全自适应噪声集合经验模态分解(CEEMDAN)方法将原始股票指数收盘价序列分解为多个本征模态函数(IMF)。然后,得到的各个IMF通过利用粒子群优化算法(PSO)优化长短期记忆网络(LSTM)的超参数后的模型进行预测,最终,将各IMF的预测结果进行加和得到对原始收盘价序列的预测结果。为验证所提方法的可行性,我们将其与LSTM、PSO-LSTM、EMD-LSTM和CEEMDAN-LSTM这四个模型进行对比,并选取五支来自不同国家且具有代表性的股票指数作为数据集。通过各模型在各数据集上的实验表明本文所提方法表现优于其他四个模型,这说明本文所提方法具有优良的可行性和普适性。 展开更多
关键词 长短期记忆网络 完全自适应噪声集合经验模态分解 粒子群优化算法 股票价格预测 深度学习
下载PDF
基于深度学习的电池健康状态监测与预测系统设计
19
作者 凌明毅 《通信电源技术》 2024年第15期88-91,共4页
文章旨在设计一套能够实时监测锂离子电池健康状态并进行准确预测的系统。通过整合改进的完全自适应噪声集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)信号分解算法、支持... 文章旨在设计一套能够实时监测锂离子电池健康状态并进行准确预测的系统。通过整合改进的完全自适应噪声集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)信号分解算法、支持向量回归(Support Vector Regression,SVR)算法以及长短期记忆(Long Short-Term Memory,LSTM)网络模型,构建了一个综合性的电池健康管理系统。通过对锂离子电池进行恒流恒压充电、恒流放电以及阻抗测量等,利用所获取的数据进行预处理、分解及模型训练。结果显示,所提出的系统能够有效预测电池的容量、健康状态及剩余使用时间,与实际数据符合度较高。该研究为电池健康管理领域的发展提供了有效参考,具有一定的理论和应用价值。 展开更多
关键词 电池健康管理 锂离子电池 实时监测 改进的完全自适应噪声集合经验模态分解(iceemdan)
下载PDF
基于CEEMDAN-Transformer的灌浆流量混合预测模型 被引量:7
20
作者 李凯 任炳昱 +2 位作者 王佳俊 关涛 余佳 《水利学报》 EI CSCD 北大核心 2023年第7期806-817,共12页
灌浆流量是最重要的水利工程灌浆参数之一,通过对灌浆流量的有效预测,可以实现对异常工况的提前响应,以保障施工质量与工程安全。然而由于灌浆过程面临的复杂地质情况,灌浆流量数据存在强非线性与波动性的特点,难以获得令人满意的计算... 灌浆流量是最重要的水利工程灌浆参数之一,通过对灌浆流量的有效预测,可以实现对异常工况的提前响应,以保障施工质量与工程安全。然而由于灌浆过程面临的复杂地质情况,灌浆流量数据存在强非线性与波动性的特点,难以获得令人满意的计算精度。现有灌浆流量预测存在的不足如下:传统神经网络模型对时间序列特征提取和加工处理不足,导致预测精度有限;传统神经网络模型测试集进行一次计算仅能输出一个结果,进行多个时间步预测需要繁杂的多次计算;单测点预测结果预测时间短并且无法反映灌浆流量序列变化的整体趋势,不利于控制灌浆流量和保障施工质量。针对上述问题,本研究提出基于CEEMDAN-Transformer的灌浆流量混合预测模型。基于完全自适应噪声集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)方法将灌浆流量分解为本征模函数与残差信号,解决灌浆流量数据的非线性与强波动的问题;采用多头注意力Transformer实现多个本征模函数(Intrinsic Mode Function,IMF)序列到序列的预测,采用多头注意力机制来构建输入和输出的全局依赖关系,提升时间序列参数特征提取水平;最后,建立时序测点多输入多输出模型实现灌浆流量预测,提升多输出序列计算效率,反映整体趋势的多输出序列能够为灌浆流量控制提供参考。工程应用结果表明,本研究提出的基于CEEMDAN-Transformer的灌浆流量混合预测模型具有较好的计算精度和计算效率。 展开更多
关键词 灌浆流量预测 完全自适应噪声集合经验模态分解 Transformer算法 注意力机制 序列到序列
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部