Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures o...Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation.展开更多
Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new fil...Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new filtering method is proposed, which uses the generalized S transform which has good time-frequency concentration criterion to transform seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random noise. The model study shows that the high frequency component in the first IMF represents mainly noise, so clearing the first IMF can suppress noise. The EMD filtering method in the t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that depends on position, frequency, and truncation characteristics of high wave numbers. This filtering method takes local data time-frequency characteristic into consideration and is easy to perform. Compared with AR predictive filtering, the component that this method filters is highly localized and contains relatively fewer low wave numbers and the filter result does not show over-smoothing effects. Real data processing proves that the EMD filtering method in the t-f-x domain after generalized S transform can effectively suppress random and coherent noise of steep dips.展开更多
A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference valu...A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference value than a zero one, the direction, in which the driving frequency of the motor should be shifted, can be promptly calculated. With the aid of a CPU and the phase locked frequency doubling technique, the motor can be steadily driven in a wide range of frequency and the optimum frequency can be captured rapidly and precisely. Experiment shows that the above method is available.展开更多
Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. T...Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.展开更多
The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the ...The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.展开更多
A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tun...A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.展开更多
China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a...China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.展开更多
The high pressure waves generated due to muzzle blast flow of tank gun during firing is a critical issue to examine. The impulsive noise from the gun has various negative effects such as damage of human bodies, damage...The high pressure waves generated due to muzzle blast flow of tank gun during firing is a critical issue to examine. The impulsive noise from the gun has various negative effects such as damage of human bodies, damage of structures, creating an environmental, social problem and also military problems such as exposure of location of troops. This high pressure impulsive sound, generated during the blast flow, was studied and attenuated. An axisymmetric computational domain was constructed by employing Spalart Allmaras turbulence model. Approximately 90% of pressure and 20 dB of sound level are reduced due to the use of the three baffle silencer at the muzzle end of the gun barrel, in comparison with the tank gun without silencer. Also, the sound pressure level at different points in the ambient region shows the same attenuation in results. This study will be helpful to understand the blast wave characteristics and also to get a good idea to design silencer for large caliber weapon system.展开更多
The quest for materials and devices that are capable of controlling heat flux continues to fuel research on thermal controlling devices. In this letter, using molecular dynamics simulations, we demonstrate that a part...The quest for materials and devices that are capable of controlling heat flux continues to fuel research on thermal controlling devices. In this letter, using molecular dynamics simulations, we demonstrate that a partially clamped singlelayer graphene can serve as a thermal modulator. The mismatch in phonon dispersion between the unclamped and clamped graphene sections results in phonon interface scattering, and the strength of interface scattering is tunable by controlling the clamp-graphene distance via applying the external pressure. Owing to the ultra-thin structure of graphene and its highly sensitive phonon dispersion to external physical interaction, the modulation efficiency--which is defined as the ratio of the highest to lowest heat flux-can reach as high as 150% at a moderate pressure of 50 GPa. This modulation efficiency can be further enhanced by arranging a number of clamps in series along the direction of the heat flux.展开更多
This work presents a short review of the current research on the acousto-optic mechanism applied to optical fibers. The role of the piezoelectric element and the acousto-optic modulator in the excitation of flexural a...This work presents a short review of the current research on the acousto-optic mechanism applied to optical fibers. The role of the piezoelectric element and the acousto-optic modulator in the excitation of flexural and longitudinal acoustic modes in the frequency range up to 1.2 MHz is highlighted. A combination of the finite elements and the transfer matrix methods is used to simulate the interaction of the waves with Bragg and long period gratings. Results show a very good agreement with experimental data. Recent applications such as the writing of gratings under the acoustic excitation and a novel viscometer sensor based on the acousto-optic mechanism are discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.41074075)National Science and Technology Project(SinoProbe-03)+1 种基金National public industry special subject(No. 201011047-02)Graduate Innovation Fund of Jilin University(No. 20121070)
文摘Nonlocal means filtering is a noise attenuation method based on redundancies in image information. It is also a nonlocal denoising method that uses the self-similarity of an image, assuming that the valid structures of the image have a certain degree of repeatability that the random noise lacks. In this paper, we use nonlocal means filtering in seismic random noise suppression. To overcome the problems caused by expensive computational costs and improper filter parameters, this paper proposes a block-wise implementation of the nonlocal means method with adaptive filter parameter estimation. Tests with synthetic data and real 2D post-stack seismic data demonstrate that the proposed algorithm better preserves valid seismic information and has a higher accuracy when compared with traditional seismic denoising methods (e.g., f-x deconvolution), which is important for subsequent seismic processing and interpretation.
基金sponsored by the National Natural Science Foundation of China (Grant No. 41174114)the National Natural Science Foundation of China and China Petroleum & Chemical Corporation Co-funded Project (No. 40839905)
文摘Deconvolution denoising in the f-x domain has some defects when facing situations like complicated geology structure, coherent noise of steep dip angles, and uneven spatial sampling. To solve these problems, a new filtering method is proposed, which uses the generalized S transform which has good time-frequency concentration criterion to transform seismic data from the time-space to time-frequency-space domain (t-f-x). Then in the t-f-x domain apply Empirical Mode Decomposition (EMD) on each frequency slice and clear the Intrinsic Mode Functions (IMFs) that noise dominates to suppress coherent and random noise. The model study shows that the high frequency component in the first IMF represents mainly noise, so clearing the first IMF can suppress noise. The EMD filtering method in the t-f-x domain after generalized S transform is equivalent to self-adaptive f-k filtering that depends on position, frequency, and truncation characteristics of high wave numbers. This filtering method takes local data time-frequency characteristic into consideration and is easy to perform. Compared with AR predictive filtering, the component that this method filters is highly localized and contains relatively fewer low wave numbers and the filter result does not show over-smoothing effects. Real data processing proves that the EMD filtering method in the t-f-x domain after generalized S transform can effectively suppress random and coherent noise of steep dips.
文摘A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference value than a zero one, the direction, in which the driving frequency of the motor should be shifted, can be promptly calculated. With the aid of a CPU and the phase locked frequency doubling technique, the motor can be steadily driven in a wide range of frequency and the optimum frequency can be captured rapidly and precisely. Experiment shows that the above method is available.
文摘Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.
基金The National Natural Science Foundation of China(No.50975047)
文摘The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.
文摘A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.
文摘China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.
基金Project(NRF-2010-013-D00007) supported by the National Research Foundation of KoreaProject supported by 2010 Year Research Professor Fund of Gyeongsang National University, Korea and NIIED Korea
文摘The high pressure waves generated due to muzzle blast flow of tank gun during firing is a critical issue to examine. The impulsive noise from the gun has various negative effects such as damage of human bodies, damage of structures, creating an environmental, social problem and also military problems such as exposure of location of troops. This high pressure impulsive sound, generated during the blast flow, was studied and attenuated. An axisymmetric computational domain was constructed by employing Spalart Allmaras turbulence model. Approximately 90% of pressure and 20 dB of sound level are reduced due to the use of the three baffle silencer at the muzzle end of the gun barrel, in comparison with the tank gun without silencer. Also, the sound pressure level at different points in the ambient region shows the same attenuation in results. This study will be helpful to understand the blast wave characteristics and also to get a good idea to design silencer for large caliber weapon system.
文摘The quest for materials and devices that are capable of controlling heat flux continues to fuel research on thermal controlling devices. In this letter, using molecular dynamics simulations, we demonstrate that a partially clamped singlelayer graphene can serve as a thermal modulator. The mismatch in phonon dispersion between the unclamped and clamped graphene sections results in phonon interface scattering, and the strength of interface scattering is tunable by controlling the clamp-graphene distance via applying the external pressure. Owing to the ultra-thin structure of graphene and its highly sensitive phonon dispersion to external physical interaction, the modulation efficiency--which is defined as the ratio of the highest to lowest heat flux-can reach as high as 150% at a moderate pressure of 50 GPa. This modulation efficiency can be further enhanced by arranging a number of clamps in series along the direction of the heat flux.
文摘This work presents a short review of the current research on the acousto-optic mechanism applied to optical fibers. The role of the piezoelectric element and the acousto-optic modulator in the excitation of flexural and longitudinal acoustic modes in the frequency range up to 1.2 MHz is highlighted. A combination of the finite elements and the transfer matrix methods is used to simulate the interaction of the waves with Bragg and long period gratings. Results show a very good agreement with experimental data. Recent applications such as the writing of gratings under the acoustic excitation and a novel viscometer sensor based on the acousto-optic mechanism are discussed.