分区频域卡尔曼滤波(Partitioned block frequency domain Kalman filtering,PBFDKF)因其收敛速度快、稳态误差小的优势被应用在自适应滤波声反馈抑制(Adaptive feedback cancellation,AFC)。然而,当声反馈路径发生突变时,卡尔曼滤波会...分区频域卡尔曼滤波(Partitioned block frequency domain Kalman filtering,PBFDKF)因其收敛速度快、稳态误差小的优势被应用在自适应滤波声反馈抑制(Adaptive feedback cancellation,AFC)。然而,当声反馈路径发生突变时,卡尔曼滤波会进入锁死状态,难以再次跟踪。本文提出一种融合神经网络的卡尔曼滤波啸叫抑制状态检测算法(Kalman⁃filter⁃based AFC with state detection model,KFSD)。该系统将卡尔曼滤波声反馈抑制系统的传声器采集信号、残差信号和滤波器更新量作为输入特征,通过神经网络对卡尔曼滤波的状态误差协方差矩阵进行修正,从而实现路径突变情况下的再次跟踪和收敛。仿真实验结果验证了所提算法具有较高的正判率、较低的虚警率和较短的延迟帧数,算法同时具备快速再跟踪性能,提高了声反馈抑制效果。展开更多
在单个麦克风的声反馈抑制系统中,基于μ准则的比例归一化最小均方(Proportionate normalized least mean square based onμ-law, MPNLMS)算法由于步长控制矩阵更优,总体收敛速度快,被广泛应用于声反馈抑制技术,但MPNLMS算法对滤波器...在单个麦克风的声反馈抑制系统中,基于μ准则的比例归一化最小均方(Proportionate normalized least mean square based onμ-law, MPNLMS)算法由于步长控制矩阵更优,总体收敛速度快,被广泛应用于声反馈抑制技术,但MPNLMS算法对滤波器系数的有偏估计会显著地降低其性能。针对上述问题,提出一种基于双麦克风模型的MPNLMS算法,系统中副麦克风估计主麦克风的有效输入信号,将估计信号与主麦克风输出信号相减之后所得的误差信号用于自适应滤波器系数的更新。仿真结果表明,提出的基于双麦克风模型的MPNLMS算法不再受制于扬声器输出信号与有效信号之间的相关性,而且上述算法的收敛速度、误差与最大增益均优于传统单个麦克风声反馈抑制系统中的MPNLMS算法。展开更多
文摘分区频域卡尔曼滤波(Partitioned block frequency domain Kalman filtering,PBFDKF)因其收敛速度快、稳态误差小的优势被应用在自适应滤波声反馈抑制(Adaptive feedback cancellation,AFC)。然而,当声反馈路径发生突变时,卡尔曼滤波会进入锁死状态,难以再次跟踪。本文提出一种融合神经网络的卡尔曼滤波啸叫抑制状态检测算法(Kalman⁃filter⁃based AFC with state detection model,KFSD)。该系统将卡尔曼滤波声反馈抑制系统的传声器采集信号、残差信号和滤波器更新量作为输入特征,通过神经网络对卡尔曼滤波的状态误差协方差矩阵进行修正,从而实现路径突变情况下的再次跟踪和收敛。仿真实验结果验证了所提算法具有较高的正判率、较低的虚警率和较短的延迟帧数,算法同时具备快速再跟踪性能,提高了声反馈抑制效果。
文摘在单个麦克风的声反馈抑制系统中,基于μ准则的比例归一化最小均方(Proportionate normalized least mean square based onμ-law, MPNLMS)算法由于步长控制矩阵更优,总体收敛速度快,被广泛应用于声反馈抑制技术,但MPNLMS算法对滤波器系数的有偏估计会显著地降低其性能。针对上述问题,提出一种基于双麦克风模型的MPNLMS算法,系统中副麦克风估计主麦克风的有效输入信号,将估计信号与主麦克风输出信号相减之后所得的误差信号用于自适应滤波器系数的更新。仿真结果表明,提出的基于双麦克风模型的MPNLMS算法不再受制于扬声器输出信号与有效信号之间的相关性,而且上述算法的收敛速度、误差与最大增益均优于传统单个麦克风声反馈抑制系统中的MPNLMS算法。