辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不...辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不同周期的脉冲分量,进而限制了其在复合故障诊断中的应用。对此,提出了改进的辛周期模态分解(improved symplectic period mode decomposition, ISPMD)方法。该方法首先采用求差增强技术和最小噪声幅值反卷积相结合的方法对信号进行降噪,增强周期脉冲,以准确估计故障周期;然后构造对应的周期截断矩阵,并通过辛几何相似变换和周期冲击强度获得辛几何周期分量;最后对残差信号采用迭代分解,进而得到不同周期的辛几何周期分量。试验结果表明,ISPMD能准确提取出周期脉冲分量,是一种有效的滚动轴承复合故障诊断方法。展开更多
自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分...自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分离方法并应用于齿轮箱复合故障诊断中。该方法首先利用ASTFA将单通道源信号进行分解,然后利用占优特征值法进行源数估计,根据源数重组观测信号,最后对观测信号进行盲源分离得到源信号的估计。实验结果表明,该方法可以有效地对齿轮箱复合故障信号进行分离进而实现齿轮箱的复合故障诊断。展开更多
文摘辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不同周期的脉冲分量,进而限制了其在复合故障诊断中的应用。对此,提出了改进的辛周期模态分解(improved symplectic period mode decomposition, ISPMD)方法。该方法首先采用求差增强技术和最小噪声幅值反卷积相结合的方法对信号进行降噪,增强周期脉冲,以准确估计故障周期;然后构造对应的周期截断矩阵,并通过辛几何相似变换和周期冲击强度获得辛几何周期分量;最后对残差信号采用迭代分解,进而得到不同周期的辛几何周期分量。试验结果表明,ISPMD能准确提取出周期脉冲分量,是一种有效的滚动轴承复合故障诊断方法。
文摘自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分离方法并应用于齿轮箱复合故障诊断中。该方法首先利用ASTFA将单通道源信号进行分解,然后利用占优特征值法进行源数估计,根据源数重组观测信号,最后对观测信号进行盲源分离得到源信号的估计。实验结果表明,该方法可以有效地对齿轮箱复合故障信号进行分离进而实现齿轮箱的复合故障诊断。