压缩感知(CS)重构中的近似消息传递(AMP)算法通过迭代执行小波阈值操作和残差更新来快速准确地实现稀疏信号重构,但它所采用的小波系数稀疏约束并不适用于非稀疏的自然图像,尤其CS观测过程存在噪声干扰时.为此,文中提出了一种基于复合...压缩感知(CS)重构中的近似消息传递(AMP)算法通过迭代执行小波阈值操作和残差更新来快速准确地实现稀疏信号重构,但它所采用的小波系数稀疏约束并不适用于非稀疏的自然图像,尤其CS观测过程存在噪声干扰时.为此,文中提出了一种基于复合稀疏约束和AMP框架的CS图像重构算法,使用相似图像块低秩约束和双边滤波约束作为自然图像的联合先验信息,以改善图像规则纹理和边缘的恢复效果,从而提升算法的重构性能.无噪CS观测的重构实验表明,文中算法的峰值信噪比(PSNR)比仅用低秩约束的AMP算法提高了0.45 d B,比原始AMP算法高6.19 d B;而在含噪CS观测的重构实验中,对应的PSNR增益则分别是0.25和4.60 d B;无论是无噪观测还是含噪观测,文中算法都获得了更佳的主观视觉效果.展开更多
文摘压缩感知(CS)重构中的近似消息传递(AMP)算法通过迭代执行小波阈值操作和残差更新来快速准确地实现稀疏信号重构,但它所采用的小波系数稀疏约束并不适用于非稀疏的自然图像,尤其CS观测过程存在噪声干扰时.为此,文中提出了一种基于复合稀疏约束和AMP框架的CS图像重构算法,使用相似图像块低秩约束和双边滤波约束作为自然图像的联合先验信息,以改善图像规则纹理和边缘的恢复效果,从而提升算法的重构性能.无噪CS观测的重构实验表明,文中算法的峰值信噪比(PSNR)比仅用低秩约束的AMP算法提高了0.45 d B,比原始AMP算法高6.19 d B;而在含噪CS观测的重构实验中,对应的PSNR增益则分别是0.25和4.60 d B;无论是无噪观测还是含噪观测,文中算法都获得了更佳的主观视觉效果.