以工业硫酸钛液水解得到的介孔偏钛酸为载体,正硅酸乙酯(TEOS)为浸渍剂,采用表面接枝法制备了 Si 掺杂的介孔 SO_4^(2-)/TiO_2。通过 X 射线衍射(XRD)、N_2吸附-脱附、X 射线光电子能谱(XPS)和傅立叶-红外光谱(FT-IR)对焙烧产物进行表征...以工业硫酸钛液水解得到的介孔偏钛酸为载体,正硅酸乙酯(TEOS)为浸渍剂,采用表面接枝法制备了 Si 掺杂的介孔 SO_4^(2-)/TiO_2。通过 X 射线衍射(XRD)、N_2吸附-脱附、X 射线光电子能谱(XPS)和傅立叶-红外光谱(FT-IR)对焙烧产物进行表征,考察了超声波和微波外场对浸渍过程的影响以及 Si提高介孔 TiO_2热稳定性的机制。结果表明,掺杂 Si 形成的 Ti-O-Si 键对介孔 TiO_2的孔结构起到支持作用,阻止晶粒长大和提高锐钛矿向金红石矿的相变温度,使 SO_4^(2-)稳定的介孔 TiO_2的热稳定性提高,在700℃焙烧后仍保持138 m^2/g 的比表面积;超声波和微波场强化了浸渍过程,大大缩短了浸渍时间,促进 Si 在内外表面的分布。展开更多
文摘以工业硫酸钛液水解得到的介孔偏钛酸为载体,正硅酸乙酯(TEOS)为浸渍剂,采用表面接枝法制备了 Si 掺杂的介孔 SO_4^(2-)/TiO_2。通过 X 射线衍射(XRD)、N_2吸附-脱附、X 射线光电子能谱(XPS)和傅立叶-红外光谱(FT-IR)对焙烧产物进行表征,考察了超声波和微波外场对浸渍过程的影响以及 Si提高介孔 TiO_2热稳定性的机制。结果表明,掺杂 Si 形成的 Ti-O-Si 键对介孔 TiO_2的孔结构起到支持作用,阻止晶粒长大和提高锐钛矿向金红石矿的相变温度,使 SO_4^(2-)稳定的介孔 TiO_2的热稳定性提高,在700℃焙烧后仍保持138 m^2/g 的比表面积;超声波和微波场强化了浸渍过程,大大缩短了浸渍时间,促进 Si 在内外表面的分布。