期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多任务约束深度学习的水工隧洞缺陷检测方法研究
1
作者
邓旭方
徐轶
+2 位作者
阿依胡兰·阿山
陈正虎
蔡伟
《水利水电快报》
2024年第7期64-69,共6页
由于水工隧洞环境复杂、缺陷类型多,数字图像处理技术在隧洞巡检中的应用存在缺陷识别精度低、鲁棒性差等问题。为此,提出了基于多任务约束深度学习的水工隧洞缺陷自动检测方法。该方法在Faster R-CNN深度学习原理的基础上,结合原始目...
由于水工隧洞环境复杂、缺陷类型多,数字图像处理技术在隧洞巡检中的应用存在缺陷识别精度低、鲁棒性差等问题。为此,提出了基于多任务约束深度学习的水工隧洞缺陷自动检测方法。该方法在Faster R-CNN深度学习原理的基础上,结合原始目标检测的定位约束、类别约束,增加特征到影像恢复的约束,可以较完整地保留图像以及缺陷特征信息,从而解决部分水工隧洞缺陷样本不全而引起的特征提取不鲁棒的问题。测试结果表明:多任务约束的Faster R-CNN深度学习方法能够较好地识别裂缝、渗水、掉块等多种病害缺陷,有效提高了识别精度,为水工隧洞工程缺陷检测提供了可靠方法。
展开更多
关键词
隧洞缺陷检测
多任务约束深度学习
Faster
R-CNN
隧洞缺陷特征表达
下载PDF
职称材料
题名
基于多任务约束深度学习的水工隧洞缺陷检测方法研究
1
作者
邓旭方
徐轶
阿依胡兰·阿山
陈正虎
蔡伟
机构
中国长江电力股份有限公司
长江勘测规划设计研究有限责任公司
国家大坝安全工程技术研究中心
武汉大学遥感信息工程学院
出处
《水利水电快报》
2024年第7期64-69,共6页
基金
中国长江电力股份有限公司科研项目(Z212102007)。
文摘
由于水工隧洞环境复杂、缺陷类型多,数字图像处理技术在隧洞巡检中的应用存在缺陷识别精度低、鲁棒性差等问题。为此,提出了基于多任务约束深度学习的水工隧洞缺陷自动检测方法。该方法在Faster R-CNN深度学习原理的基础上,结合原始目标检测的定位约束、类别约束,增加特征到影像恢复的约束,可以较完整地保留图像以及缺陷特征信息,从而解决部分水工隧洞缺陷样本不全而引起的特征提取不鲁棒的问题。测试结果表明:多任务约束的Faster R-CNN深度学习方法能够较好地识别裂缝、渗水、掉块等多种病害缺陷,有效提高了识别精度,为水工隧洞工程缺陷检测提供了可靠方法。
关键词
隧洞缺陷检测
多任务约束深度学习
Faster
R-CNN
隧洞缺陷特征表达
Keywords
tunnel defect detection
deep learning model with multi-task constraint
Faster R-CNN
feature detection of tunnel defect
分类号
TV698.1 [水利工程—水利水电工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多任务约束深度学习的水工隧洞缺陷检测方法研究
邓旭方
徐轶
阿依胡兰·阿山
陈正虎
蔡伟
《水利水电快报》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部