期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度支撑域描述子的多光谱图像匹配算法
被引量:
3
1
作者
赵恩波
史泽林
刘云鹏
《计算机应用研究》
CSCD
北大核心
2019年第9期2821-2824,2839,共5页
针对现有多光谱图像匹配算法鲁棒性不强的问题,提出一种新的基于多尺度支撑域描述子的多光谱图像匹配算法。该算法首先提取Harris角点作为特征点;然后分别统计特征点不同尺度邻域内的边缘方向直方图,组合构成特征描述子;以欧氏距离为相...
针对现有多光谱图像匹配算法鲁棒性不强的问题,提出一种新的基于多尺度支撑域描述子的多光谱图像匹配算法。该算法首先提取Harris角点作为特征点;然后分别统计特征点不同尺度邻域内的边缘方向直方图,组合构成特征描述子;以欧氏距离为相似度准则,使用比值法获得初始匹配结果;最后提出了一种基于RANSAC算法的外点去除算法。实验结果表明,该算法可有效匹配多光谱图像,且与已有算法相比鲁棒性更强,获取的正确匹配对更多。
展开更多
关键词
多光谱图像匹配
特征描述子
外点去除
下载PDF
职称材料
题名
基于多尺度支撑域描述子的多光谱图像匹配算法
被引量:
3
1
作者
赵恩波
史泽林
刘云鹏
机构
中国科学院沈阳自动化研究所
中国科学院大学
中国科学院光电信息处理重点实验室
辽宁省图像理解与视觉计算重点实验室
出处
《计算机应用研究》
CSCD
北大核心
2019年第9期2821-2824,2839,共5页
基金
国家自然科学基金资助项目(61540069)
装发部共用技术课题资助项目(Y6K4250401)
文摘
针对现有多光谱图像匹配算法鲁棒性不强的问题,提出一种新的基于多尺度支撑域描述子的多光谱图像匹配算法。该算法首先提取Harris角点作为特征点;然后分别统计特征点不同尺度邻域内的边缘方向直方图,组合构成特征描述子;以欧氏距离为相似度准则,使用比值法获得初始匹配结果;最后提出了一种基于RANSAC算法的外点去除算法。实验结果表明,该算法可有效匹配多光谱图像,且与已有算法相比鲁棒性更强,获取的正确匹配对更多。
关键词
多光谱图像匹配
特征描述子
外点去除
Keywords
multi-spectral image registration
feature point descriptor
eliminating outliers
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度支撑域描述子的多光谱图像匹配算法
赵恩波
史泽林
刘云鹏
《计算机应用研究》
CSCD
北大核心
2019
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部