期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
联合归一化模块和多分支特征的行人重识别
1
作者 任丹萍 董会升 +1 位作者 何婷婷 张春华 《计算机工程与设计》 北大核心 2024年第4期1233-1239,共7页
针对行人重识别技术中存在特征挖掘不充分的问题,提出一种联合归一化模块和多分支特征的行人重识别模型。在主干网络中嵌入注意力机制引导的实例归一化模块,减轻背景等杂波信息的影响。在双级特征融合模块对局部特征进行加权后再聚合形... 针对行人重识别技术中存在特征挖掘不充分的问题,提出一种联合归一化模块和多分支特征的行人重识别模型。在主干网络中嵌入注意力机制引导的实例归一化模块,减轻背景等杂波信息的影响。在双级特征融合模块对局部特征进行加权后再聚合形成对行人特征的更细节表达。联合平滑交叉熵损失、三元组损失以及跨分支特征蒸馏损失对网络进行优化。所提模型在Market-1501和DukeMTMC-ReID数据集上首位准确率分别达到了95.7%和89.2%。实验结果表明,该模型增强了对图像特征的提取。 展开更多
关键词 归一化 行人重识别 注意力机制 多分支特征 特征提取 特征蒸馏损失 三元组损失
下载PDF
联合注意力机制和多分支特征的行人重识别
2
作者 任丹萍 董会升 何婷婷 《计算机工程与设计》 北大核心 2024年第8期2520-2526,共7页
针对行人重识别技术中存在模型识别率低的问题,提出一个联合注意力机制和多分支特征的网络模型。在残差网络中嵌入自注意力机制模块强化图像有效特征的提取,在深度特征挖掘模块,使用全局特征分支、局部关联特征分支以及随机擦除特征分... 针对行人重识别技术中存在模型识别率低的问题,提出一个联合注意力机制和多分支特征的网络模型。在残差网络中嵌入自注意力机制模块强化图像有效特征的提取,在深度特征挖掘模块,使用全局特征分支、局部关联特征分支以及随机擦除特征分支形成对行人更全面的描述。在优化过程中提出联合余弦交叉熵损失、全样本三元组损失、中心损失以及特征对齐损失对网络使用最小最大策略进行更新。所提方法在Market-1501和DukeMTMC-reID数据集上首位准确率分别达到了95.8%和89.8%。 展开更多
关键词 行人重识别 深度学习 注意力机制 多分支特征 局部特征 随机擦除 三元组损失
下载PDF
基于多尺度多分支特征的动作识别
3
作者 张磊 韩广良 《液晶与显示》 CAS CSCD 北大核心 2022年第12期1614-1625,共12页
针对基于人体骨架序列的动作识别存在的特征提取不充分、不全面及识别准确率不高的问题,本文提出了基于多分支特征和多尺度时空特征的动作识别模型。首先,利用多种算法的结合对原始数据进行了特征增强;其次,将多分支的特征输入形式改进... 针对基于人体骨架序列的动作识别存在的特征提取不充分、不全面及识别准确率不高的问题,本文提出了基于多分支特征和多尺度时空特征的动作识别模型。首先,利用多种算法的结合对原始数据进行了特征增强;其次,将多分支的特征输入形式改进为多分支的融合特征信息并分别输入到网络中,经过一定深度的网络模块后融合在一起;然后,构建多尺度的时空卷积模块作为网络的基本模块,用来提取多尺度的时空特征;最后,构建整体网络模型输出动作类别。实验结果表明,在NTURGB-D 60数据集的两种划分标准Cross-subject和Cross-view上的识别准确率分别为89.6%和95.1%,在NTURGB-D 120数据集的两种划分标准Cross-subject和Cross-setup上的识别准确率分别为84.1%和86.0%。与其他算法相对比,本文算法提取到了更为多样化、多尺度的动作特征,动作类别的识别准确率有一定的提升。 展开更多
关键词 动作识别 多尺度特征 多分支特征 特征融合
下载PDF
基于多分支空谱特征增强的高光谱图像分类 被引量:1
4
作者 李铁 李文许 +1 位作者 王军国 高乔裕 《液晶与显示》 CAS CSCD 北大核心 2024年第6期844-855,共12页
为了解决高光谱图像自身及分类过程中噪声干扰大、空间-光谱特征信息提取不足以及有限样本下分类性能不佳等问题,提出一种基于多分支空谱特征增强的高光谱图像分类模型SSFE-MBACNN。首先,利用多分支特征提取模块分别提取浅层空谱特征和... 为了解决高光谱图像自身及分类过程中噪声干扰大、空间-光谱特征信息提取不足以及有限样本下分类性能不佳等问题,提出一种基于多分支空谱特征增强的高光谱图像分类模型SSFE-MBACNN。首先,利用多分支特征提取模块分别提取浅层空谱特征和深层空间特征信息,并引入注意力机制抑制噪声干扰。其次,设计一种改进多尺度空谱特征提取融合模块及结合双池化和空洞卷积的空间特征增强模块实现空谱特征增强,减少模型参数量和提高分类性能。最后,用全局平均池化层代替全连接层,进一步降低参数量,缓解模型过拟合问题。实验结果表明,在Indian Pines(10%训练样本)、Pavia University (5%训练样本)和Salinas(1%训练样本)数据集分别取得了0.990 7、0.997 5和0.994 7的总体分类精度。SSFE-MBACNN不仅能充分利用空谱特征信息,而且在有限样本下也取得了优秀的分类性能,明显高于其他对比方法。 展开更多
关键词 高光谱图像分类 特征增强 多分支特征提取 注意力机制 多尺度特征 双池化 空洞卷积
下载PDF
融合多分支与多粒度特征的东北虎重识别
5
作者 李晓楠 朱朦 +1 位作者 任洪娥 陶锐 《哈尔滨理工大学学报》 CAS 北大核心 2023年第6期95-102,共8页
为解决东北虎重识别研究中存在的细节特征提取不充分等问题,提出了一种融合多分支与多粒度特征的东北虎重识别模型CMM-Net。其中,全局分支负责提取宏观上的粗粒度特征;注意力分支通过插入坐标注意力模块加深了网络对重要特征的关注度;... 为解决东北虎重识别研究中存在的细节特征提取不充分等问题,提出了一种融合多分支与多粒度特征的东北虎重识别模型CMM-Net。其中,全局分支负责提取宏观上的粗粒度特征;注意力分支通过插入坐标注意力模块加深了网络对重要特征的关注度;局部分支通过将特征图切分成不同条带块,从而提取东北虎更细粒度的局部特征。通过多个分支结构和多个细粒度特征结合来对模型进行优化学习,加强全局特征与局部特征的关联性。同时提出用Circle Loss与Softmax的联合损失来提高网络精度。实验结果表明,在ATRW数据集上所提模型在单摄像头环境下mAP为93.6%,跨摄像头环境下mAP为77.4%,均优于多数文献所提方法,证明了本文模型的有效性。 展开更多
关键词 东北虎重识别 残差网络 多分支特征 坐标注意力机制 circle loss
下载PDF
融合ECA的多分支多损失行人重识别
6
作者 王卫东 徐金慧 张志峰 《江苏科技大学学报(自然科学版)》 CAS 2024年第1期82-88,共7页
针对现有行人特征提取方法的不足,提出了一种融合ECA的多分支多损失行人重识别方法.首先,将轻量级ECA注意力模块嵌入到骨干网络ResNet50中,以增强显著特征,抑制无关特征.其次,设计了一个多分支网络结构分别提取行人的全局特征和局部特征... 针对现有行人特征提取方法的不足,提出了一种融合ECA的多分支多损失行人重识别方法.首先,将轻量级ECA注意力模块嵌入到骨干网络ResNet50中,以增强显著特征,抑制无关特征.其次,设计了一个多分支网络结构分别提取行人的全局特征和局部特征,针对不同的特征采取不同的多池化特征提取方式,增强网络的特征提取能力.最后,联合三种损失函数对模型进行训练,并采用BNNeck进行优化,从而提高模型的鲁棒性.在Market1501和DukeMTMC-reID数据集上的实验表明,所提方法具有较好的效果,在识别精度上也优于较多的经典算法. 展开更多
关键词 行人重识别 ECA注意力模块 多分支特征 多损失联合
下载PDF
基于改进多分支特征共享结构网络的裂缝检测算法 被引量:1
7
作者 李刚 陈永强 +2 位作者 何廷全 代玉 兰栋超 《激光与光电子学进展》 CSCD 北大核心 2022年第12期274-283,共10页
针对路面裂缝检测时裂缝的位置、形态的不确定性及裂缝特征与路面背景纹理的相似性等问题,提出了一种改进的多分支特征共享结构网络的裂缝图像分割算法。为了在减少计算参数冗余的同时提高检测精度,使用轻量化特征提取网络获取高层特征... 针对路面裂缝检测时裂缝的位置、形态的不确定性及裂缝特征与路面背景纹理的相似性等问题,提出了一种改进的多分支特征共享结构网络的裂缝图像分割算法。为了在减少计算参数冗余的同时提高检测精度,使用轻量化特征提取网络获取高层特征,采用多分支跳跃连接的方法提高通道间的信息利用。各分支融合全局卷积网络(GCN)模块和边界细化(BR)模块,提高了对裂缝边缘的分割性能和对裂缝区域内部分类的鲁棒性,利用循环残差卷积(RRC)模块,推动了对裂缝特征的累积。最后采用中轴法提取裂缝骨架,计算裂缝的形态参数,得到裂缝长度和宽度的相对误差分别为4.73%和5.21%。设计的多组对比实验结果表明,所提改进算法能够有效地提高对路面裂缝检测的精度和效率。 展开更多
关键词 图像处理 语义分割 裂缝检测 裂缝参数计算 边界细化 多分支特征共享
原文传递
基于FVC-CNN模型的野外车辆声信号分类
8
作者 李翔 王艳 李宝清 《中国科学院大学学报(中英文)》 CSCD 北大核心 2023年第2期208-216,共9页
针对野外环境下单通道车辆声信号受风噪影响严重、分类性能较低的问题,提出一种基于声阵列4通道同步采集信号的一维卷积神经网络模型(FVC-CNN)。该模型借鉴注意力机制加权平均的思想对Inception网络结构进行改进,作为输入层有针对性地提... 针对野外环境下单通道车辆声信号受风噪影响严重、分类性能较低的问题,提出一种基于声阵列4通道同步采集信号的一维卷积神经网络模型(FVC-CNN)。该模型借鉴注意力机制加权平均的思想对Inception网络结构进行改进,作为输入层有针对性地提取4通道声信号多个不同时间尺度的特征,抑制噪声干扰,再根据不同车辆声信号特征分布特点,分别训练3个特征提取网络SWNet、LWNet和TNet来提取相应车辆的特征,最后对提取的特征进行多分支多维度的融合以供分类。在相同数据集上进行验证,实验结果表明,FVC-CNN模型总识别率可达94.22%,相较于传统方法识别率提高14.08%,取得了较好的分类效果。 展开更多
关键词 野外车辆信号分类 4通道声阵列输入 Inception结构 注意力机制 多分支特征提取 多分支多维度特征融合
下载PDF
一种基于MBFF-Net的遥感影像建筑物提取方法
9
作者 徐辛超 乔浩磊 +2 位作者 刘明岳 付晓天 赵晗光 《测绘科学》 CSCD 北大核心 2024年第2期115-123,共9页
针对当前基于卷积神经网络的建筑物提取存在漏检、错检和边缘不准确的问题,提出一种多分支特征融合的建筑物提取网络MBFF-Net。首先,在VGG16-UNet网络的跳跃连接部分引入CBAM注意力机制,强化网络对建筑物特征信息的学习;然后,设计多分... 针对当前基于卷积神经网络的建筑物提取存在漏检、错检和边缘不准确的问题,提出一种多分支特征融合的建筑物提取网络MBFF-Net。首先,在VGG16-UNet网络的跳跃连接部分引入CBAM注意力机制,强化网络对建筑物特征信息的学习;然后,设计多分支特征融合模块替换解码器中的卷积块,融合不同感受野的特征信息,捕捉局部和跨通道的特征关系,丰富特征表达能力;最后,结合CBAM注意力机制和多分支特征融合模块构建MBFF-Net模型,并在WHU数据集和Inria数据集上进行验证。结果表明,与U-Net、PSPNet、SegNet、VGG16-UNet相比,MBFF-Net在IoU、Precision、Recall以及mPA 4个指标上均为最优,提取的建筑物更加完整,减少了错检和漏检现象,在建筑物提取任务中表现出良好的性能,验证了其在建筑物提取方面的可行性。 展开更多
关键词 建筑物提取 注意力机制 多分支特征融合 MBFF-Net
原文传递
Classification of underwater still objects based on multi-field features and SVM 被引量:4
10
作者 TIAN Jie XUE Shan-hua HUANG Hai-ning ZHANG Chun-hua 《Journal of Marine Science and Application》 2007年第1期36-40,共5页
A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the pr... A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two. 展开更多
关键词 underwater still objects CLASSIFICATION feature support vector machine (SVM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部