Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic th...Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.展开更多
The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inh...The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inhibition, a set of exponentialequations was established to characterize the enzymatic hydrolysiscurves. The verification was carried out by a series of experimentalresults and indicated that the average regressive error was less than5/100. According to the proposed kinetic model, the kinetic constantsand thermodynamic constants of the reaction system were alsocalculated.展开更多
Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.C...Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped ki...In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.展开更多
A functional electrocatalytic membrane reactor(ECMR) was performed for the electrocatalytic oxidation of2,2,3,3-tetrafluoro-l-propanol(TFP) into high value-added sodium 2,2,3,3-tetrafluoropropionate(STFP),A computatio...A functional electrocatalytic membrane reactor(ECMR) was performed for the electrocatalytic oxidation of2,2,3,3-tetrafluoro-l-propanol(TFP) into high value-added sodium 2,2,3,3-tetrafluoropropionate(STFP),A computational fluid dynamics(CFD) technique was applied to simulate the hydrodynamic distributions along a tubular ECMR so as to provide guidance for the design and optimization of ECMR Two-dimensional simulation with porous media model was employed to predict the properties of fluid dynamics in ECMR.The experimental investigation was carried to confirm the CFD simulation.Results showed that a uniform distribution of permeate velocity along the tubular reactor with short length and large diameter could be obtained.TFP conversion of97.7%,the selectivity to STFP of 99.9%and current efficiency of 40.1%were achieved from the ECMR with a length of 40 mm and an inside diameter of 53 mm.The simulations were in good agreement with the experimental results.展开更多
A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational ...A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational dynamical models of Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction(DEMETER) and observed data.It was found that the anomaly correlation coefficients(ACCs) spatial pattern of June-July-August(JJA) precipitation over southeastern China between the seven models and the observation were increased significantly;especially in the central and the northeastern areas,the ACCs were all larger than 0.42(above 95% level) and 0.53(above 99% level).Meanwhile,the root-mean-square errors(RMSE) were reduced in each model along with the multi-model ensemble(MME) for some of the stations in the northeastern area;additionally,the value of RMSE difference between before and after downscaling at some stations were larger than 1 mm d-1.Regionally averaged JJA rainfall anomaly temporal series of the downscaling scheme can capture the main characteristics of observation,while the correlation coefficients(CCs) between the temporal variations of the observation and downscaling results varied from 0.52 to 0.69 with corresponding variations from-0.27 to 0.22 for CCs between the observation and outputs of the models.展开更多
A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexib...A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexibility of links and joints was taken into account in the mechanical structure dimensions optimization and reducers selection, in which Timoshenko model was used to discretize the hollow links. Two criteria, i.e. maximization of fundamental frequency and minimization of self-mass/load ratio, were utilized to optimize the manipulators. The NSGA-II (fast elitist nondominated sorting genetic algorithms) was employed to solve the multi-objective optimization problem. How the joints flexibility affects the manipulators design was analyzed and shown in the numerical analysis example. The results indicate that simultaneous consideration of the joints and the links flexibility is very necessary for manipulators optimal design. Finally, several optimal combinations were provided. The effectiveness of the optimization method was proved by comparing with ADAMS simulation results. The self-mass/load ratio error of the two methods is within 10%. The maximum error of the natural frequency by the two methods is 23.74%. The method proposed in this work provides a fast and effective pathway for manipulator design and reducers selection.展开更多
The GEF-WB Nutrient Reduction project aims to reduce the phosphorus inputs of the Black Sea from the Danube by means of different interventions. Hungary takes part of this project by enhancing the nutrient trapping ca...The GEF-WB Nutrient Reduction project aims to reduce the phosphorus inputs of the Black Sea from the Danube by means of different interventions. Hungary takes part of this project by enhancing the nutrient trapping capacity of the Gemenc and Beda-Karapancsa wetlands (GBK) which can be found on the premises of the Danube Drava National Park along the Danube River in Southern Hungary. Due to anthropogenic influences, less of small floods reach the oxbows of the area than some decades before which has a negative effect on the ecosystem. The objective of the study is to predict the nutrient reduction capacity of the Gemenc-B6da-Karapancsa water system and to make a proposal to increase this capacity. Although the floodplain vegetation has a huge nutrient intake capacity, this is limited by the fact that the floodplain is not always covered by the water of the river Danube. For that reason, a combination of hydrodynamic modelling, flood probability calculation and an estimation of suspended solids settling constitute the base of this study. The main course taken into account is the settling of suspended solids and the ratio of total nitrogen and total phosphorus to the mass of sediment is determined by local measurement results.展开更多
The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexi...The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexible multi-body dynamics, and boundary element analysis were integrated to obtain the tetrahedron-element models, structural vibration response, and radiated noise,respectively. The accuracy of the finite-element model of the engine was validated by modal analysis via single-input multi-output technology, while the dash panel was validated by sound transmission loss experiment. The block was optimized to reduce the radiated acoustic power from the engine surface. The acoustic transfer path between the engine cabin and passenger compartment was then established. The coupled analysis results reveal that the interior noise is optimized due to the engine noise reduction.展开更多
A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far a...The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far above the bottom. Hydraulic mixing is essential in a solid-liquid two-phase flow process, in which large solid particles can be found at the initial stage and turn to being high-concentration viscous liquid (non-Newtonian fluid). A 0.75 m3 digester was taken as a case study with CFD (computational fluid dynamics) software. The basic pattern was simulated by using water as the medium and the pattern of pseudo plastic fluid state was simulated by the Euler-Euler Model, then the effect of optimized design with bottom inflow and high dispersed outlets could be verified. Viewed from the mixing effects, the velocity of 0.6 m/s is better than l m/s for water medium, while 1 m/s better than 0.6 m/s for pseudo plastic fluid medium.展开更多
The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the t...The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.展开更多
In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a ...In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.展开更多
The Altaid tectonic collage extends over Central Asia, exposing numerous accretionary orogens that can account for the Palaeozoic continental crust growth. A pluridisciplinary approach, using geochronological, geochem...The Altaid tectonic collage extends over Central Asia, exposing numerous accretionary orogens that can account for the Palaeozoic continental crust growth. A pluridisciplinary approach, using geochronological, geochemical, structural and palaeomagnetic tools was carried out to unravel the architecture and the evolution of West Junggar (Northwestern China), a segment of the Altaid Collage. A polycyclic geodynamic evolution is inferred and includes: (1) an Early Palaeozoic cycle, characterized by the closure of two oceanic basins bounded by island-arc systems; (2) an Early Devonian subduction jamming resulting in a minor-scale collision documented by thrusting, syntectonic sedimentation and subsequent crutal thinning associ- ated with alkaline magmatism; (3) a Late Palaeozoic cycle, driven by the evolution of two opposite subduction zones devel- oped upon the Early Palaeozoic basement. Detailed structural analysis and paleomagnetic data provide constraints for the late evolution of Junggar in the frame of the development of the Late Palaeozoic Kazakh orocline, which led to oblique subduction and transpression in the West Junggar accretionary complex. Progressive buckling of the Kazakh orocline further resulted in Late Carboniferous to Permian wrench tectonics, and lateral displacement of lithotectonic units. Block rotations that continued after the Late Triassic are due to diachronous intraplate reactivation. This scenario mirrors the Palaeozoic geodynamics of the Altaid Collage. Multiple Early Palaeozoic collisions of intra-oceanic arcs and micro continents have contributed to the formarion of the Kazakhstan Microconrinent. Since the Late Palaeozoic, subductions formed around this microcontinent and the final oblique closure of oceanic domains resulted in the transcurrent collage of Tarim and Siberia cratons. Palaeozoic strike-slip faults were later reactivated during Mesozoic intracontinental tectonics.展开更多
Previous study has shown that dopamine D1 receptor(D1DR)agonists,fenoldopam(FEN)and l-stepholidine(l-SPD),have inhibitory effects on breast cancer lung metastasis.To quantitatively describe and predict the pharmacodyn...Previous study has shown that dopamine D1 receptor(D1DR)agonists,fenoldopam(FEN)and l-stepholidine(l-SPD),have inhibitory effects on breast cancer lung metastasis.To quantitatively describe and predict the pharmacodynamic(PD)properties of FEN and l-SPD and to explore the PD model structure of cancer metastasis treating drugs,we used the data of lung metastasis in 4T1 breast cancer mice under the treatment of either FEN or l-SPD,and established a PD model.The PD model assumed an exponential growth for both primary tumor and metastasis.The primary tumor emitted cells to form metastases,and the cell emitting rate was proportional to power form of the primary tumor weight.The total number of lung metastasis was set as the target value.D1DR agonists inhibited metastasis by inhibiting cell emitting rate instead of the growth rate of primary tumor or metastasis.The model results showed that the decrease in the number of lung metastases was roughly proportional to the square of the drug dose.The values of PD coefficient reflected the inhibitory ability of the drugs,and that of l-SPD(0.274 kg/mg)was greater than that of FEN(0.0393 kg/mg).This PD model can quantitatively describe the effects of FEN and l-SPD on the progression of lung metastasis in 4T1 primary breast cancer mice and can predict the time course of drug efficacy at multiple doses,providing a reference for PD model structure of other drugs for cancer metastasis indication.展开更多
Abstract Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge chal...Abstract Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge challenge. Most observers believe that the continued progress of these cities relies on the optimization of scientific adaptive management in which social, economic, and ecological factors are incorporated. A systems perspective that combines policies, management priorities, and long-term policy impacts needs to be applied. To date, however, such an approach has not been adopted, which means it is difficult to implement adaptive management at the regional scale. In this study, we used various situations to develop a multiple adaptive scenario system dynamics model. We then simulated a range of policy scenarios, with Ordos in the Inner Mongolia Autonomous Region as a case study. Simulation results showed that the current strategy is not sustainable and predicted that the system would exceed the environmental capacity, with risks of resource exhaustion and urban decline in 2025-2035. Five critical policy variables, including the urban population carrying capacity, rates of water consumption and water recycling, and expansion of urban land cover, were identified during sensitivity analysis. We developed and compared six socio-economic scenarios. The urban area, represented by the urban population density, seemed to transition through five different stages, namely natural growth, rapid growth, stable oscillation, fading, and rebalancing. Our scenarios suggested that different policies had different roles through each stage. The water use efficiency management policy had a comprehensive far-reaching influence on the system behavior; land urbanization management functions dominated at the start, and population capacity management was a major control in the mid-term. Our results showed that the water recycling policy and the urban population carrying capacity were extremely important, and both should be reinforced and evaluated by the local governments.展开更多
This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic ...This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the construction of the scheme.In order to distinguish the physical and numerical requirements to recover a physical solution in a discretized space,two particle collision times will be used in the current high-order gas-kinetic scheme(GKS).Different from the low order gas dynamic model of the Riemann solution in the Godunov type schemes,the current method is based on a high-order multidimensional gas evolution model,where the space and time variation of a gas distribution function along a cell interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation.The high-order flux function becomes a unification of the upwind and central difference schemes.The current study demonstrates that both the high-order initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme.Especially,for a compact method,the use of a high-order local evolution solution in both space and time may become even more important,because a short stencil and local low order dynamic evolution model,i.e.,the Riemann solution,are contradictory,where valid mechanism for the update of additional degrees of freedom becomes limited.展开更多
The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational flu...The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.展开更多
In this work, the prediction of wear for revolute joint with clearance in multibody systems is investigated using a computational methodology. The contact model in clearance joint is established using a new hybrid non...In this work, the prediction of wear for revolute joint with clearance in multibody systems is investigated using a computational methodology. The contact model in clearance joint is established using a new hybrid nonlinear contact force model and the friction effect is considered by using a modified Coulomb friction model. The dynamics model of multibody system with clearance is established using dynamic segmentation modeling method and the computational process for wear analysis of clearance joint in multibody systems is presented. The main computational process for wear analysis of clearance joint includes two steps, which are dynamics analysis and wear analysis. The dynamics simulation of multibody system with revolute clearance joint is carried out and the contact forces are drawn and used to calculate the wear amount of revolute clearance joint based on the Archard's wear model. Finally, a four-bar multibody mechanical system with revolute clearance joint is used as numerical example application to perform the simulation and show the dynamics responses and wear characteristics of multibody systems with revolute clearance joint. The main results of this work indicate that the contact between the joint elements is wider and more frequent in some specific regions and the wear phenomenon is not regular around the joint surface, which causes the clearance size increase non-regularly after clearance joint wear. This work presents an effective method to predict wear of revolute joint with clearance in multibody systems.展开更多
文摘Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.
基金Supported by National Natural Science Foundation of China (No. 20276052) and Tianjin Science & Technology Commission (No. 023105411).
文摘The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inhibition, a set of exponentialequations was established to characterize the enzymatic hydrolysiscurves. The verification was carried out by a series of experimentalresults and indicated that the average regressive error was less than5/100. According to the proposed kinetic model, the kinetic constantsand thermodynamic constants of the reaction system were alsocalculated.
基金Supported by the National Natural Science Foundation of China(No.61300214)the National Natural Science Foundation of Henan Province(No.132300410148)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher ofHenan Province Universities(No.2013GGJS-026)
文摘Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.
基金Supported by the National Natural Science Foundation of China(21206119 and21576208)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT13084)
文摘A functional electrocatalytic membrane reactor(ECMR) was performed for the electrocatalytic oxidation of2,2,3,3-tetrafluoro-l-propanol(TFP) into high value-added sodium 2,2,3,3-tetrafluoropropionate(STFP),A computational fluid dynamics(CFD) technique was applied to simulate the hydrodynamic distributions along a tubular ECMR so as to provide guidance for the design and optimization of ECMR Two-dimensional simulation with porous media model was employed to predict the properties of fluid dynamics in ECMR.The experimental investigation was carried to confirm the CFD simulation.Results showed that a uniform distribution of permeate velocity along the tubular reactor with short length and large diameter could be obtained.TFP conversion of97.7%,the selectivity to STFP of 99.9%and current efficiency of 40.1%were achieved from the ECMR with a length of 40 mm and an inside diameter of 53 mm.The simulations were in good agreement with the experimental results.
基金supported by the special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200906018)the National Basic Research Program of China (Grant Nos. 2010CB950304 and 2009CB421406)the Knowl-edge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-QN202)
文摘A statistical downscaling approach based on multiple-linear-regression(MLR) for the prediction of summer precipitation anomaly in southeastern China was established,which was based on the outputs of seven operational dynamical models of Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction(DEMETER) and observed data.It was found that the anomaly correlation coefficients(ACCs) spatial pattern of June-July-August(JJA) precipitation over southeastern China between the seven models and the observation were increased significantly;especially in the central and the northeastern areas,the ACCs were all larger than 0.42(above 95% level) and 0.53(above 99% level).Meanwhile,the root-mean-square errors(RMSE) were reduced in each model along with the multi-model ensemble(MME) for some of the stations in the northeastern area;additionally,the value of RMSE difference between before and after downscaling at some stations were larger than 1 mm d-1.Regionally averaged JJA rainfall anomaly temporal series of the downscaling scheme can capture the main characteristics of observation,while the correlation coefficients(CCs) between the temporal variations of the observation and downscaling results varied from 0.52 to 0.69 with corresponding variations from-0.27 to 0.22 for CCs between the observation and outputs of the models.
基金Project(2009AA04Z216) supported by the National High-Tech Research and Development Program (863 Program) of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Project of ChinaProject supported by the HIT Oversea Talents Introduction Program,China
文摘A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexibility of links and joints was taken into account in the mechanical structure dimensions optimization and reducers selection, in which Timoshenko model was used to discretize the hollow links. Two criteria, i.e. maximization of fundamental frequency and minimization of self-mass/load ratio, were utilized to optimize the manipulators. The NSGA-II (fast elitist nondominated sorting genetic algorithms) was employed to solve the multi-objective optimization problem. How the joints flexibility affects the manipulators design was analyzed and shown in the numerical analysis example. The results indicate that simultaneous consideration of the joints and the links flexibility is very necessary for manipulators optimal design. Finally, several optimal combinations were provided. The effectiveness of the optimization method was proved by comparing with ADAMS simulation results. The self-mass/load ratio error of the two methods is within 10%. The maximum error of the natural frequency by the two methods is 23.74%. The method proposed in this work provides a fast and effective pathway for manipulator design and reducers selection.
文摘The GEF-WB Nutrient Reduction project aims to reduce the phosphorus inputs of the Black Sea from the Danube by means of different interventions. Hungary takes part of this project by enhancing the nutrient trapping capacity of the Gemenc and Beda-Karapancsa wetlands (GBK) which can be found on the premises of the Danube Drava National Park along the Danube River in Southern Hungary. Due to anthropogenic influences, less of small floods reach the oxbows of the area than some decades before which has a negative effect on the ecosystem. The objective of the study is to predict the nutrient reduction capacity of the Gemenc-B6da-Karapancsa water system and to make a proposal to increase this capacity. Although the floodplain vegetation has a huge nutrient intake capacity, this is limited by the fact that the floodplain is not always covered by the water of the river Danube. For that reason, a combination of hydrodynamic modelling, flood probability calculation and an estimation of suspended solids settling constitute the base of this study. The main course taken into account is the settling of suspended solids and the ratio of total nitrogen and total phosphorus to the mass of sediment is determined by local measurement results.
基金Project(2011BAE22B05)supported by the 12th Five-year National Key Projects of Science and Technology Support Plan,China
文摘The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexible multi-body dynamics, and boundary element analysis were integrated to obtain the tetrahedron-element models, structural vibration response, and radiated noise,respectively. The accuracy of the finite-element model of the engine was validated by modal analysis via single-input multi-output technology, while the dash panel was validated by sound transmission loss experiment. The block was optimized to reduce the radiated acoustic power from the engine surface. The acoustic transfer path between the engine cabin and passenger compartment was then established. The coupled analysis results reveal that the interior noise is optimized due to the engine noise reduction.
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.
文摘The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far above the bottom. Hydraulic mixing is essential in a solid-liquid two-phase flow process, in which large solid particles can be found at the initial stage and turn to being high-concentration viscous liquid (non-Newtonian fluid). A 0.75 m3 digester was taken as a case study with CFD (computational fluid dynamics) software. The basic pattern was simulated by using water as the medium and the pattern of pseudo plastic fluid state was simulated by the Euler-Euler Model, then the effect of optimized design with bottom inflow and high dispersed outlets could be verified. Viewed from the mixing effects, the velocity of 0.6 m/s is better than l m/s for water medium, while 1 m/s better than 0.6 m/s for pseudo plastic fluid medium.
基金supported by National Natural Science Foundation of China under Grant No. 10675060
文摘The dynamical behavior in the cortical brain network of macaque is studied by modeling each cortical area with a subnetwork of interacting excitable neurons. We characterize the system by studying how to perform the transition, which is now topology-dependent, from the active state to that with no activity. This could be a naive model for the wakening and sleeping of a brain-like system, i.e., a multi-component system with two different dynamical behavior.
文摘In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.
基金the National Basic Research Program of China(Grant Nos.2009CB825008&2007CB411301)Chinese National S&T Major Project(Grant No.2008ZX05008)+1 种基金the project‘‘Paleomagnetic study on the tectonic and paleogeographic evolution of northwest of China’’funded by SINOPECco-sponsored by the National Natural Science Foundation of China(Grant Nos.40821002&40802043)
文摘The Altaid tectonic collage extends over Central Asia, exposing numerous accretionary orogens that can account for the Palaeozoic continental crust growth. A pluridisciplinary approach, using geochronological, geochemical, structural and palaeomagnetic tools was carried out to unravel the architecture and the evolution of West Junggar (Northwestern China), a segment of the Altaid Collage. A polycyclic geodynamic evolution is inferred and includes: (1) an Early Palaeozoic cycle, characterized by the closure of two oceanic basins bounded by island-arc systems; (2) an Early Devonian subduction jamming resulting in a minor-scale collision documented by thrusting, syntectonic sedimentation and subsequent crutal thinning associ- ated with alkaline magmatism; (3) a Late Palaeozoic cycle, driven by the evolution of two opposite subduction zones devel- oped upon the Early Palaeozoic basement. Detailed structural analysis and paleomagnetic data provide constraints for the late evolution of Junggar in the frame of the development of the Late Palaeozoic Kazakh orocline, which led to oblique subduction and transpression in the West Junggar accretionary complex. Progressive buckling of the Kazakh orocline further resulted in Late Carboniferous to Permian wrench tectonics, and lateral displacement of lithotectonic units. Block rotations that continued after the Late Triassic are due to diachronous intraplate reactivation. This scenario mirrors the Palaeozoic geodynamics of the Altaid Collage. Multiple Early Palaeozoic collisions of intra-oceanic arcs and micro continents have contributed to the formarion of the Kazakhstan Microconrinent. Since the Late Palaeozoic, subductions formed around this microcontinent and the final oblique closure of oceanic domains resulted in the transcurrent collage of Tarim and Siberia cratons. Palaeozoic strike-slip faults were later reactivated during Mesozoic intracontinental tectonics.
基金Natural Science Foundation of Beijing(Grant No.7192100).
文摘Previous study has shown that dopamine D1 receptor(D1DR)agonists,fenoldopam(FEN)and l-stepholidine(l-SPD),have inhibitory effects on breast cancer lung metastasis.To quantitatively describe and predict the pharmacodynamic(PD)properties of FEN and l-SPD and to explore the PD model structure of cancer metastasis treating drugs,we used the data of lung metastasis in 4T1 breast cancer mice under the treatment of either FEN or l-SPD,and established a PD model.The PD model assumed an exponential growth for both primary tumor and metastasis.The primary tumor emitted cells to form metastases,and the cell emitting rate was proportional to power form of the primary tumor weight.The total number of lung metastasis was set as the target value.D1DR agonists inhibited metastasis by inhibiting cell emitting rate instead of the growth rate of primary tumor or metastasis.The model results showed that the decrease in the number of lung metastases was roughly proportional to the square of the drug dose.The values of PD coefficient reflected the inhibitory ability of the drugs,and that of l-SPD(0.274 kg/mg)was greater than that of FEN(0.0393 kg/mg).This PD model can quantitatively describe the effects of FEN and l-SPD on the progression of lung metastasis in 4T1 primary breast cancer mice and can predict the time course of drug efficacy at multiple doses,providing a reference for PD model structure of other drugs for cancer metastasis indication.
基金supported by the National Natural Science Foundation of China(Grant Nos.41590845&41601096)the China Postdoctoral Science Foundation(Grant No.2015M581160)
文摘Abstract Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge challenge. Most observers believe that the continued progress of these cities relies on the optimization of scientific adaptive management in which social, economic, and ecological factors are incorporated. A systems perspective that combines policies, management priorities, and long-term policy impacts needs to be applied. To date, however, such an approach has not been adopted, which means it is difficult to implement adaptive management at the regional scale. In this study, we used various situations to develop a multiple adaptive scenario system dynamics model. We then simulated a range of policy scenarios, with Ordos in the Inner Mongolia Autonomous Region as a case study. Simulation results showed that the current strategy is not sustainable and predicted that the system would exceed the environmental capacity, with risks of resource exhaustion and urban decline in 2025-2035. Five critical policy variables, including the urban population carrying capacity, rates of water consumption and water recycling, and expansion of urban land cover, were identified during sensitivity analysis. We developed and compared six socio-economic scenarios. The urban area, represented by the urban population density, seemed to transition through five different stages, namely natural growth, rapid growth, stable oscillation, fading, and rebalancing. Our scenarios suggested that different policies had different roles through each stage. The water use efficiency management policy had a comprehensive far-reaching influence on the system behavior; land urbanization management functions dominated at the start, and population capacity management was a major control in the mid-term. Our results showed that the water recycling policy and the urban population carrying capacity were extremely important, and both should be reinforced and evaluated by the local governments.
基金supported by Hong Kong Research Grant Council(Grant No.621011)HKUST research fund(Grant No.SRFI11SC05)
文摘This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions.In the current approach,the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the construction of the scheme.In order to distinguish the physical and numerical requirements to recover a physical solution in a discretized space,two particle collision times will be used in the current high-order gas-kinetic scheme(GKS).Different from the low order gas dynamic model of the Riemann solution in the Godunov type schemes,the current method is based on a high-order multidimensional gas evolution model,where the space and time variation of a gas distribution function along a cell interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation.The high-order flux function becomes a unification of the upwind and central difference schemes.The current study demonstrates that both the high-order initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme.Especially,for a compact method,the use of a high-order local evolution solution in both space and time may become even more important,because a short stencil and local low order dynamic evolution model,i.e.,the Riemann solution,are contradictory,where valid mechanism for the update of additional degrees of freedom becomes limited.
基金Project(No.2009BAG12A01-C03) supported by the National Key Technology R&D Program of China
文摘The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.
基金the National Natural Science Foundation of China (Grant Nos. 50975056 and 11072066)the Scientific Research Foundation of Harbin Institute of Technology at Weihai (Grant No. HIT(WH)XB201120)the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2013122)
文摘In this work, the prediction of wear for revolute joint with clearance in multibody systems is investigated using a computational methodology. The contact model in clearance joint is established using a new hybrid nonlinear contact force model and the friction effect is considered by using a modified Coulomb friction model. The dynamics model of multibody system with clearance is established using dynamic segmentation modeling method and the computational process for wear analysis of clearance joint in multibody systems is presented. The main computational process for wear analysis of clearance joint includes two steps, which are dynamics analysis and wear analysis. The dynamics simulation of multibody system with revolute clearance joint is carried out and the contact forces are drawn and used to calculate the wear amount of revolute clearance joint based on the Archard's wear model. Finally, a four-bar multibody mechanical system with revolute clearance joint is used as numerical example application to perform the simulation and show the dynamics responses and wear characteristics of multibody systems with revolute clearance joint. The main results of this work indicate that the contact between the joint elements is wider and more frequent in some specific regions and the wear phenomenon is not regular around the joint surface, which causes the clearance size increase non-regularly after clearance joint wear. This work presents an effective method to predict wear of revolute joint with clearance in multibody systems.