Visible light‐driven carboxylation with CO_(2) have emerged as a sustainable and powerful way to transfer waste to treasure.However,it is still challenging for aryl fluorides due to the low reactivities of both C(sp2...Visible light‐driven carboxylation with CO_(2) have emerged as a sustainable and powerful way to transfer waste to treasure.However,it is still challenging for aryl fluorides due to the low reactivities of both C(sp2)−F bonds and CO_(2).Herein,we report the first photocatalytic carboxylation of aryl C−F bonds with CO_(2).The visible‐light photoredox catalysis enables selective carboxylation of strong C(sp2)−F bonds in diverse polyluoroarenes,such as penta‐,tetra‐,and tri‐fluoroarenes under mild conditions,providing a facile access to a series of important polyfluoroaryl carboxylic acids with good yields.In contrast to previous reports of direct capture of polyfluoroaryl radicals,mechanistic studies suggest that the reduction of fleeting polyfluoroaryl radicals into polyfluoroaryl anions might be involved in this transformation,which may open a new avenue for photocatalytic functionalization of aryl C−F bonds.展开更多
A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a...A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a versatile and general platform for subsequent surface modification. With active double bonds on the surface, various polymers, such as poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide(PMEDSAH) and poly(N-vinylpyrrolidone)(PVP), can be grafted by conventional radical polymerization. Double bond surface functionalization and subsequent polymer grafting have been verified by static water contact angle, Fourier transform infrared–attenuated total reflectance(FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy(XPS) measurements. Protein adsorption assays showed that the polymermodified substrates have good protein-resistant properties. Considering the advantages of facility, versatility and substrate- independence, this method should be useful in designing functional interfaces for bioengineering applications.展开更多
The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well establi...The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well established that some functional sites, such as open metals sites, Lewis basic nitrogen sites and fluorine groups, have shown significantly enhanced affinity toward more polarizable molecules. Thus, a water-stable Eu3+-based fcu-metal-organic framework(MOF)(compound 1) with amino functional groups has been successfully constructed through a reticular chemistry approach.As a result, the activated compound 1 exhibits moderately high uptakes of C2-hydrocarbons, but a less obvious adsorption of CH4 at the same conditions. Among them, the adsorption capacity of C2 H2 is up to 143.6 cm3 cm-3 and a relatively high selectivity of C2 H2/CH4(107.7) is obtained at near room temperature. Moreover, compound 1 is also validated as an exceptional adsorbent for CO2 capture, with the fairly high capacity of CO2(92.6 cm3 cm-3) and CO2/N2 selectivity(151.7) at ambient conditions. The excellent performance of compound 1 is mainly driven by the exposed amino functional groups within the contracted pores. Such effect thus leads to the achievement of dual-functional platform for methane purification and carbon dioxide capture. Furthermore, compound 1 features a satisfactory water stability,which is confirmed by the powder X-ray diffraction(PXRD)analysis and the retest of porosity after being soaked in water.展开更多
文摘Visible light‐driven carboxylation with CO_(2) have emerged as a sustainable and powerful way to transfer waste to treasure.However,it is still challenging for aryl fluorides due to the low reactivities of both C(sp2)−F bonds and CO_(2).Herein,we report the first photocatalytic carboxylation of aryl C−F bonds with CO_(2).The visible‐light photoredox catalysis enables selective carboxylation of strong C(sp2)−F bonds in diverse polyluoroarenes,such as penta‐,tetra‐,and tri‐fluoroarenes under mild conditions,providing a facile access to a series of important polyfluoroaryl carboxylic acids with good yields.In contrast to previous reports of direct capture of polyfluoroaryl radicals,mechanistic studies suggest that the reduction of fleeting polyfluoroaryl radicals into polyfluoroaryl anions might be involved in this transformation,which may open a new avenue for photocatalytic functionalization of aryl C−F bonds.
基金supported by the National Science Fund for Distinguished Young Scholars(21125418)the National Natural Science Foundation of China(21174098,21304062 and 21334004)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(13KJB430020)the China Postdoctoral Science Foundation(2013M541714)
文摘A simple approach has been developed to functionalize various substrates, such as gold and polyvinylchloride, with dopamine methacrylamide—a molecule with adhesive properties that mimic those of mussels—to produce a versatile and general platform for subsequent surface modification. With active double bonds on the surface, various polymers, such as poly([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide(PMEDSAH) and poly(N-vinylpyrrolidone)(PVP), can be grafted by conventional radical polymerization. Double bond surface functionalization and subsequent polymer grafting have been verified by static water contact angle, Fourier transform infrared–attenuated total reflectance(FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy(XPS) measurements. Protein adsorption assays showed that the polymermodified substrates have good protein-resistant properties. Considering the advantages of facility, versatility and substrate- independence, this method should be useful in designing functional interfaces for bioengineering applications.
基金supported by the National Natural Science Foundation of China(U1609219,51632008,61721005,51432001and 51772268)Zhejiang Provincial Natural Science Foundation(LD18E020001)
文摘The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well established that some functional sites, such as open metals sites, Lewis basic nitrogen sites and fluorine groups, have shown significantly enhanced affinity toward more polarizable molecules. Thus, a water-stable Eu3+-based fcu-metal-organic framework(MOF)(compound 1) with amino functional groups has been successfully constructed through a reticular chemistry approach.As a result, the activated compound 1 exhibits moderately high uptakes of C2-hydrocarbons, but a less obvious adsorption of CH4 at the same conditions. Among them, the adsorption capacity of C2 H2 is up to 143.6 cm3 cm-3 and a relatively high selectivity of C2 H2/CH4(107.7) is obtained at near room temperature. Moreover, compound 1 is also validated as an exceptional adsorbent for CO2 capture, with the fairly high capacity of CO2(92.6 cm3 cm-3) and CO2/N2 selectivity(151.7) at ambient conditions. The excellent performance of compound 1 is mainly driven by the exposed amino functional groups within the contracted pores. Such effect thus leads to the achievement of dual-functional platform for methane purification and carbon dioxide capture. Furthermore, compound 1 features a satisfactory water stability,which is confirmed by the powder X-ray diffraction(PXRD)analysis and the retest of porosity after being soaked in water.