期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进DETR的机器人铆接缺陷检测方法研究 被引量:1
1
作者 李宗刚 宋秋凡 +1 位作者 杜亚江 陈引娟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第4期1690-1700,共11页
铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆... 铆接作为铁道车辆结构件的主要连接方式,合格的铆接质量是车辆安全稳定运行的重要保证。针对现有铆接缺陷检测方法存在检测精度低、检测点位少、检测智能化水平不高等问题,提出一种基于改进DETR的机器人铆接缺陷检测方法。首先,搭建铆接缺陷检测系统,依次采集工件尺寸大、铆钉尺寸小工况下的铆接缺陷图像。其次,为了增强DETR模型在小目标中的图像特征提取能力和检测性能,以EfficientNet作为DETR中的主干特征提取网络,并将3-D权重注意力机制SimAM引入EfficientNet网络,从而有效保留图像特征层的镦头形态信息和铆点区域的空间信息。然后,在颈部网络中引入加权双向特征金字塔模块,以EfficientNet网络的输出作为特征融合模块的输入对各尺度特征信息进行聚合,增大不同铆接缺陷的类间差异。最后,利用Smooth L1和DIoU的线性组合改进原模型预测网络的回归损失函数,提高模型的检测精度和收敛速度。结果表明,改进模型表现出较高的检测性能,对于铆接缺陷的平均检测精度mAP为97.12%,检测速度FPS为25.4帧/s,与Faster RCNN、YOLOX等其他主流检测模型相比,在检测精度和检测速度方面均具有较大优势。研究结果能够满足实际工况中大型铆接件的小尺寸铆钉铆接缺陷实时在线检测的需求,为视觉检测技术在铆接工艺中的应用提供一定的参考价值。 展开更多
关键词 铆接缺陷检测 DETR EfficientNet 3-D注意力机制 多尺度加权特征融合
下载PDF
基于改进的YOLOv5安全帽佩戴检测算法 被引量:1
2
作者 雷建云 李志兵 +1 位作者 夏梦 田望 《湖北大学学报(自然科学版)》 CAS 2024年第1期1-13,共13页
针对安全帽佩戴检测中存在的误检和漏检的问题,提出一种基于YOLOv5模型改进的安全帽佩戴检测算法。改进模型引入多尺度加权特征融合网络,即在YOLOv5的网络结构中增加一个浅层检测尺度,并引入特征权重进行加权融合,构成新的四尺检测结构... 针对安全帽佩戴检测中存在的误检和漏检的问题,提出一种基于YOLOv5模型改进的安全帽佩戴检测算法。改进模型引入多尺度加权特征融合网络,即在YOLOv5的网络结构中增加一个浅层检测尺度,并引入特征权重进行加权融合,构成新的四尺检测结构,有效地提升图像浅层特征的提取及融合能力;在YOLOv5的Neck网络的BottleneckCSP结构中加入SENet模块,使模型更多地关注目标信息忽略背景信息;针对大分辨率的图像,添加图像切割层,避免多倍下采样造成的小目标特征信息大量丢失。对YOLOv5模型进行改进之后,通过自制的安全帽数据集进行训练检测,mAP和召回率分别达到97.06%、92.54%,与YOLOv5相比较分别提升了4.74%和4.31%。实验结果表明:改进的YOLOv5算法可有效提升安全帽佩戴的检测性能,能够准确识别施工人员的安全帽佩戴情况,从而大大降低施工现场的安全风险。 展开更多
关键词 目标检测 多尺度加权特征融合 注意力机制 图像切割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部