Using polar equations for conic sections, we research conic circumscribed n-sided polygons(n ≥ 4) deeply on the basis of papers[1-3]. We obtain a general fixed value theorem for directed areas of some triangles in ...Using polar equations for conic sections, we research conic circumscribed n-sided polygons(n ≥ 4) deeply on the basis of papers[1-3]. We obtain a general fixed value theorem for directed areas of some triangles in conic circumscribed n-sided polygons and derive as many as n(n - 3) concurrent points of three lines and some other collinear, equiareal results in conic circumscribed n-sided polygons(n ≥ 4). So the results of papers[1-3] are unified.展开更多
The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is a...The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is assumed to be covered by an infinitely extended thin uniform elastic plate, while the lower surface is bounded by a porous bottom surface having a small deformation. By employing a simplified perturbation analysis, involving a small parameter c^(〈〈l ), which measures the smallness of the deformation, the governing Boundary Value Problem (BVP) is reduced to a simpler BVP for the first-order correction of the potential function. This BVP is solved using a method based on Green's integral theorem with the introduction of suitable Green's function to obtain the first-order potential, and this potential function is then utilized to calculate the first-order reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number propagating just below the elastic plate and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the surface below the elastic plate. Again, for small angles of incidence, the reflected wave energy is more as compared to the other angles of incidence. It is also observed that the reflected wave energy is somewhat sensitive to the changes in the flexural rigidity of the elastic plate, the porosity of the bed and the ripple wave numbers. The main advantage of the present study is that the results for the values of reflection and transmission coefficients obtained are found to satisfy the energy-balance relation almost accurately.展开更多
In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate con...In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate convexity-preserving in-terpolating transcendental curves;even constructing convexity-preserving interpolating polynomial curves,it is required to solve a system of equations or recur to a complicated iterative process. The method developed in this paper overcomes the above draw-backs. The basic idea is:first to construct a kind of trigonometric polynomial curves with a shape parameter,and interpolating trigonometric polynomial parametric curves with C2(or G1) continuity can be automatically generated without having to solve any system of equations or do any iterative computation. Then,the convexity of the constructed curves can be guaranteed by the appropriate value of the shape parameter. Performing the method is easy and fast,and the curvature distribution of the resulting interpolating curves is always well-proportioned. Several numerical examples are shown to substantiate that our algorithm is not only correct but also usable.展开更多
Given any (2,4)-elliptic surface with nine smooth rational curves,eight (2)-curves and one (3)-curve,forming a Dynkin diagram of type [2,2][2,2][2,2][2,2,3],we show that a fake projective plane can be constructed from...Given any (2,4)-elliptic surface with nine smooth rational curves,eight (2)-curves and one (3)-curve,forming a Dynkin diagram of type [2,2][2,2][2,2][2,2,3],we show that a fake projective plane can be constructed from it by taking a degree 3 cover and then a degree 7 cover.We also determine the types of singular fibres of such a (2,4)-elliptic surface.展开更多
基金Foundation item: Supported by Natural Science Foundation of China(60675022)
文摘Using polar equations for conic sections, we research conic circumscribed n-sided polygons(n ≥ 4) deeply on the basis of papers[1-3]. We obtain a general fixed value theorem for directed areas of some triangles in conic circumscribed n-sided polygons and derive as many as n(n - 3) concurrent points of three lines and some other collinear, equiareal results in conic circumscribed n-sided polygons(n ≥ 4). So the results of papers[1-3] are unified.
基金Partially Supported by a Research from Department of Science and Technology(DST),India under Grant No.SB/FTP/MS-003/2013
文摘The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is assumed to be covered by an infinitely extended thin uniform elastic plate, while the lower surface is bounded by a porous bottom surface having a small deformation. By employing a simplified perturbation analysis, involving a small parameter c^(〈〈l ), which measures the smallness of the deformation, the governing Boundary Value Problem (BVP) is reduced to a simpler BVP for the first-order correction of the potential function. This BVP is solved using a method based on Green's integral theorem with the introduction of suitable Green's function to obtain the first-order potential, and this potential function is then utilized to calculate the first-order reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number propagating just below the elastic plate and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the surface below the elastic plate. Again, for small angles of incidence, the reflected wave energy is more as compared to the other angles of incidence. It is also observed that the reflected wave energy is somewhat sensitive to the changes in the flexural rigidity of the elastic plate, the porosity of the bed and the ripple wave numbers. The main advantage of the present study is that the results for the values of reflection and transmission coefficients obtained are found to satisfy the energy-balance relation almost accurately.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719400)the National Natural Science Founda-tion of China (Nos. 60673031 and 60333010) the National Natural Science Foundation for Innovative Research Groups of China (No. 60021201)
文摘In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate convexity-preserving in-terpolating transcendental curves;even constructing convexity-preserving interpolating polynomial curves,it is required to solve a system of equations or recur to a complicated iterative process. The method developed in this paper overcomes the above draw-backs. The basic idea is:first to construct a kind of trigonometric polynomial curves with a shape parameter,and interpolating trigonometric polynomial parametric curves with C2(or G1) continuity can be automatically generated without having to solve any system of equations or do any iterative computation. Then,the convexity of the constructed curves can be guaranteed by the appropriate value of the shape parameter. Performing the method is easy and fast,and the curvature distribution of the resulting interpolating curves is always well-proportioned. Several numerical examples are shown to substantiate that our algorithm is not only correct but also usable.
基金supported by the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology (Grant No. NRF-2007-2-C00002)
文摘Given any (2,4)-elliptic surface with nine smooth rational curves,eight (2)-curves and one (3)-curve,forming a Dynkin diagram of type [2,2][2,2][2,2][2,2,3],we show that a fake projective plane can be constructed from it by taking a degree 3 cover and then a degree 7 cover.We also determine the types of singular fibres of such a (2,4)-elliptic surface.