随着数字金融服务业的不断发展,互联网和金融服务系统积累了海量文本数据,对金融文本中描述的金融事件自动分类是金融科技的现实需求,也是自然语言处理和机器学习领域广泛关注的方向。目前,深度学习方法已在文本分类中广泛应用,针对文...随着数字金融服务业的不断发展,互联网和金融服务系统积累了海量文本数据,对金融文本中描述的金融事件自动分类是金融科技的现实需求,也是自然语言处理和机器学习领域广泛关注的方向。目前,深度学习方法已在文本分类中广泛应用,针对文本数据中的金融事件多标签分类中存在的已标注数据缺少、已有深度学习方法消耗资源大以及现有方法未利用金融事件文本的具体特点等问题,通过采用ALBERT和TextCNN等表示工具,引入主体词注意力机制,提出了一种半监督金融事件多标签分类方法。首先,通过无监督数据增强(Unsupervised data augmentation,UDA)方法缓解标注数据量不足的问题;其次,引入了主体词注意力机制,使用ALBERT动态词向量表征方法对文本中的词进行表示;然后,利用TextCNN对文本进行综合语义表示;最后,分别采用交叉熵和KL散度度量标记数据和无标记数据的损失来训练模型。在金融文本数据集上验证了本文所提方法的有效性。展开更多
针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进...针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进行文本特征向量的提取,并获得上下文语义信息;将预训练提取的文本特征作为Seq2Seq-Attention(Sequence to Sequence-Attention)模型的输入序列,构建标签字典以获取多标签间的关联关系.将分类模型在3种数据集上分别进行对比实验,结果表明:模型分类的效果F1值均超过90%.该模型不仅能提高档案文本的多标签分类效果,也能关注标签之间的相关关系.展开更多
深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力...深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力机制与多尺度特征提取的轻量化心电图多标签分类网络(Lightweight Network with Attention for Multi Scale Classification,LAMSCN)。该模型可以有效地识别多种心脏病症状。实验结果表明,与MobileNet等主流模型相比,LAMSCN有效降低了模型参数量,同时对17种疾病的分类性能指标F1可以达到0.905,极大降低了对部署设备的要求。展开更多
文摘随着数字金融服务业的不断发展,互联网和金融服务系统积累了海量文本数据,对金融文本中描述的金融事件自动分类是金融科技的现实需求,也是自然语言处理和机器学习领域广泛关注的方向。目前,深度学习方法已在文本分类中广泛应用,针对文本数据中的金融事件多标签分类中存在的已标注数据缺少、已有深度学习方法消耗资源大以及现有方法未利用金融事件文本的具体特点等问题,通过采用ALBERT和TextCNN等表示工具,引入主体词注意力机制,提出了一种半监督金融事件多标签分类方法。首先,通过无监督数据增强(Unsupervised data augmentation,UDA)方法缓解标注数据量不足的问题;其次,引入了主体词注意力机制,使用ALBERT动态词向量表征方法对文本中的词进行表示;然后,利用TextCNN对文本进行综合语义表示;最后,分别采用交叉熵和KL散度度量标记数据和无标记数据的损失来训练模型。在金融文本数据集上验证了本文所提方法的有效性。
文摘针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进行文本特征向量的提取,并获得上下文语义信息;将预训练提取的文本特征作为Seq2Seq-Attention(Sequence to Sequence-Attention)模型的输入序列,构建标签字典以获取多标签间的关联关系.将分类模型在3种数据集上分别进行对比实验,结果表明:模型分类的效果F1值均超过90%.该模型不仅能提高档案文本的多标签分类效果,也能关注标签之间的相关关系.
文摘深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力机制与多尺度特征提取的轻量化心电图多标签分类网络(Lightweight Network with Attention for Multi Scale Classification,LAMSCN)。该模型可以有效地识别多种心脏病症状。实验结果表明,与MobileNet等主流模型相比,LAMSCN有效降低了模型参数量,同时对17种疾病的分类性能指标F1可以达到0.905,极大降低了对部署设备的要求。