This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interio...This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.展开更多
基金supported by Major Research Plan of National Natural Science Foundation of China (Grant No. 91430105)
文摘This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.