期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于格点搜索法的MOMEDA在滚动轴承故障特征提取中的应用 被引量:4
1
作者 于明奇 夏均忠 +2 位作者 白云川 吕麒鹏 刘鲲鹏 《军事交通学院学报》 2018年第3期50-55,共6页
针对背景噪声下故障轴承产生的周期性脉冲特征微弱难以提取问题,提出多点优化最小熵解卷积修正(MOMEDA)方法,并利用格点搜索法解决其滤波器设置需人工干预问题。首先以频域谱负熵为寻优目标,利用格点搜索法迭代求解MOMEDA滤波器最优阶数... 针对背景噪声下故障轴承产生的周期性脉冲特征微弱难以提取问题,提出多点优化最小熵解卷积修正(MOMEDA)方法,并利用格点搜索法解决其滤波器设置需人工干预问题。首先以频域谱负熵为寻优目标,利用格点搜索法迭代求解MOMEDA滤波器最优阶数;其次应用该参数寻优方法下的MOMEDA对仿真信号和轴承内圈故障信号中的周期性脉冲成分进行增强,并通过平方包络谱提取微弱故障特征;然后应用受试者工作特征(ROC)曲线评估该方法的灵敏性和特异性。该方法可有效增强故障脉冲成分,且具有良好的灵敏性和特异性。 展开更多
关键词 滚动轴承 故障特征提取 谱负 多点优化最小卷积修正(momeda) ROC曲线
下载PDF
基于迭代SGMD与改进MOMEDA的滚动轴承微弱故障诊断
2
作者 王富珂 高丙朋 蔡鑫 《组合机床与自动化加工技术》 北大核心 2024年第12期145-150,157,共7页
针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭... 针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭度谱确定MOMEDA的故障周期,利用白鹭群优化算法(ESOA)对滤波器长度进行自适应寻优,通过IMOMEDA对最优分量进行解卷积处理;最后,对解卷积处理后的信号进行包络谱分析,提取故障特征频率完成故障诊断。仿真及实验分析结果表明,所提方法能有效提取强背景噪声下的滚动轴承微弱故障特征信息。 展开更多
关键词 滚动轴承 迭代辛几何模态分 改进多点最优最小卷积调整 综合指标 白鹭群优化算法 故障诊断
下载PDF
基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取 被引量:16
3
作者 刘岩 伍星 +1 位作者 刘韬 陈庆 《振动与冲击》 EI CSCD 北大核心 2019年第23期219-229,共11页
轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微... 轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微弱故障提取效果并不理想。针对这一问题,将改进多点优化最小熵解卷积(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)与VMD相结合,研究了滤波器长度对MOMEDA效果的影响,提出基于进退法确定最优滤波器长度的自适应MOMEDA方法。利用自适应MOMEDA对信号降噪并避免传统MED迭代以及滤波后可能出现的虚假峰值。将自适应MOMEDA降噪后的信号使用VMD进行分解,然后依据谱峭度大小进行重构,对重构之后的信号进行故障特征提取,取得了较好的效果。最后通过实验验证了方法的可行性及有效性。 展开更多
关键词 多点优化最小卷积 变分模态分 谱峭度 滚动轴承早期故障 进退法
下载PDF
基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法 被引量:23
4
作者 胡爱军 严家祥 白泽瑞 《振动与冲击》 EI CSCD 北大核心 2021年第7期268-273,共6页
风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted... 风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和增强倒频谱的风电机组齿轮箱多故障诊断方法。依据齿轮和轴承不同部位的故障特征频率设置合理的解卷积周期,利用MOMEDA对原始信号进行预处理;再通过增强倒频谱进一步抑制噪声干扰和增强故障特征;将增强倒频谱中的突出成分与齿轮箱故障特征频率对比,判断故障类型。实际风电机组齿轮箱多故障振动试验数据分析结果表明,该方法可以有效地提取出齿轮箱多故障特征信息。 展开更多
关键词 齿轮箱 多故障诊断 特征提取 多点最优最小卷积(momeda) 增强倒频谱
下载PDF
基于ASSD-MOMEDA-FWEO相结合的滚动轴承故障诊断 被引量:3
5
作者 唐贵基 丁傲 +1 位作者 王晓龙 张晔 《自动化仪表》 CAS 2021年第12期8-14,共7页
针对滚动轴承微弱故障信号的非线性、非平稳、易被强背景噪声掩盖的特点,提出一种自适应奇异谱分解(ASSD)、多点优化最小熵解卷积(MOMEDA)与频率加权能量算子(FWEO)相融合的微弱故障诊断方法。首先,利用ASSD算法对原始信号进行处理,采... 针对滚动轴承微弱故障信号的非线性、非平稳、易被强背景噪声掩盖的特点,提出一种自适应奇异谱分解(ASSD)、多点优化最小熵解卷积(MOMEDA)与频率加权能量算子(FWEO)相融合的微弱故障诊断方法。首先,利用ASSD算法对原始信号进行处理,采用合成峭度与斯皮尔曼等级相关系数(SRCC)作为联合判据,自适应确定奇异谱分量个数后,根据合成峭度最大原则筛选出最佳奇异谱分量。然后,利用MOMEDA算法对最佳奇异谱分量作进一步解卷积处理,实现故障特征强化放大。最后,通过FWEO算法获取解卷积信号的瞬时能量信号,并通过傅里叶变换(FFT)得到瞬时能量谱,从中拾取出故障特征信息。仿真和试验信号分析结果表明,所述方法可有效提取强噪声下微弱故障特征,实现轴承故障精确诊断。 展开更多
关键词 滚动轴承 故障诊断 自适应奇异谱分 多点优化最小卷积 频率加权能量算子
下载PDF
基于ACMD与改进MOMEDA的滚动轴承故障诊断 被引量:6
6
作者 石佳 黄宇峰 王锋 《振动与冲击》 EI CSCD 北大核心 2023年第16期218-226,261,共10页
针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOM... 针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOMEDA)的故障诊断方法。(1)为提高信号信噪比,采用基于基尼系数指标的ACMD,进行信号重构预处理;(2)为提高参数设定的准确性,提出改进的MOMEDA方法——利用天鹰优化算法,以多点峭度最大为目标,寻优确定滤波器周期参数;(3)对信号进行包络谱分析,通过对比包络谱的主导频率成分与理论故障特征频率,判断故障类型。仿真及实测数据分析结果表明,该方法能有效提取强背景噪声下的滚动轴承故障信号的特征信息,具备一定的优越性与实用性。 展开更多
关键词 自适应非线性调频分量分(ACMD) 基尼系数 天鹰优化算法 多点最优调整最小卷积 滚动轴承 故障诊断
下载PDF
基于LMD和MOMEDA的滚动轴承早期故障特征提取研究 被引量:7
7
作者 金京 刘畅 +1 位作者 兰雨涛 王衍学 《机电工程》 CAS 北大核心 2021年第3期276-285,共10页
采用局域均值分解(LMD)提取强噪声背景下的滚动轴承的故障特征效果并不理想,针对该问题,将多点优化最小熵解卷积(MOMEDA)与局域均值分解(LMD)相结合,进行了滚动轴承微弱故障信号处理研究。首先,利用局域均值分解(LMD)对外圈故障轴承的... 采用局域均值分解(LMD)提取强噪声背景下的滚动轴承的故障特征效果并不理想,针对该问题,将多点优化最小熵解卷积(MOMEDA)与局域均值分解(LMD)相结合,进行了滚动轴承微弱故障信号处理研究。首先,利用局域均值分解(LMD)对外圈故障轴承的振动信号进行了信号重构;其次,利用多点优化最小熵解卷积(MOMEDA)滤波,进行了包络分析来提取故障特征;最后,将所提出的方法与局域均值分解(LMD)重构后,用最小熵解卷积(MED)滤波故障特征提取方法进行了对比;此外,采用所提方法分析了内圈故障。研究结果表明:所提出的方法对微弱故障特征提取有更好的适用性,能在包络谱中看到多倍频峰值,且峰值附近干扰很少;仿真与试验结果验证了方法的有效性。 展开更多
关键词 局域均值分 多点优化最小卷积 最小卷积 滚动轴承 故障诊断
下载PDF
基于SVD-MOMEDA的高速列车齿轮箱轴承故障诊断 被引量:4
8
作者 朱丹 苏燕辰 燕春光 《机车电传动》 北大核心 2020年第2期144-148,152,共6页
针对强背景噪声环境下高速列车齿轮箱轴承故障信号难以检测的问题以及多点优化最小熵解卷积修正(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)方法受滤波器阶数、故障周期影响的问题,提出了基于奇异值分解(singu... 针对强背景噪声环境下高速列车齿轮箱轴承故障信号难以检测的问题以及多点优化最小熵解卷积修正(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)方法受滤波器阶数、故障周期影响的问题,提出了基于奇异值分解(singular value decomposition, SVD)改进的MOMEDA的轴承故障诊断方法。首先采用SVD作为MOMEDA的前置滤波器滤除部分噪声,然后通过MOMEDA多点峭度谱追踪故障周期成分,采用变步长搜索法迭代求解MOMEDA滤波器最优阶数,最后利用最优参数相对应的MOMEDA增强信号中的周期性脉冲,并通过包络谱提取故障特征。仿真信号和试验数据分析表明:该方法能实现高速列车齿轮箱轴承故障的精确诊断,且故障诊断效果优于互补经验模态分解方法。 展开更多
关键词 高速列车 故障诊断 多点优化最小卷积修正 奇异值分 滚动轴承 齿轮箱
原文传递
基于改进信息图与MOMEDA的滚动轴承故障特征提取 被引量:10
9
作者 夏均忠 于明奇 +2 位作者 白云川 刘鲲鹏 吕麒鹏 《振动与冲击》 EI CSCD 北大核心 2019年第4期26-32,共7页
为解决最大相关峭度解卷积存在的故障周期需要预先设置等问题,提出多点优化最小熵解卷积修正(MOMEDA)用于增强轴承故障信号,并应用改进信息图降低噪声对其多点峭度谱的干扰。通过引入轴承故障与正常状态下谱负熵的比值关系,优化信息图... 为解决最大相关峭度解卷积存在的故障周期需要预先设置等问题,提出多点优化最小熵解卷积修正(MOMEDA)用于增强轴承故障信号,并应用改进信息图降低噪声对其多点峭度谱的干扰。通过引入轴承故障与正常状态下谱负熵的比值关系,优化信息图中平均谱负熵算法,提出基于滤波器组的改进信息图方法;构建带通滤波器进行滤波降噪,并通过MOMEDA多点峭度谱识别故障周期;应用MOMEDA增强滤波信号中的故障周期性脉冲成分,并通过平方包络谱提取微弱故障特征。试验表明,较之信息图等方法,改进信息图的降噪效果较突出,可有效提高故障周期的识别度,实现MOMEDA自适应增强故障信号。 展开更多
关键词 滚动轴承 特征提取 信息图 改进信息图 多点优化最小卷积修正(momeda)
下载PDF
基于WOA-VMD联合MOMEDA的轴承外圈故障特征提取方法 被引量:6
10
作者 王莹莹 陈志刚 王衍学 《机电工程》 CAS 北大核心 2023年第11期1655-1663,共9页
滚动轴承工作环境较为复杂,在复杂的环境因素影响下,其故障特征信号容易受到噪声的影响,导致其难以被识别。针对这一问题,提出了一种基于鲸鱼优化算法(WOA)的变分模态分解(VMD)联合多点最优最小熵解卷积(MOMEDA)的滚动轴承外圈故障特征... 滚动轴承工作环境较为复杂,在复杂的环境因素影响下,其故障特征信号容易受到噪声的影响,导致其难以被识别。针对这一问题,提出了一种基于鲸鱼优化算法(WOA)的变分模态分解(VMD)联合多点最优最小熵解卷积(MOMEDA)的滚动轴承外圈故障特征提取方法。首先,利用变分模态分解(VMD)对仿真信号进行了分解,使用鲸鱼优化算法(WOA)确定了最佳分解层数以及各分量的样本熵;然后,以样本熵最小值为目标寻优,得出了包含故障信号的最佳分量,对得到的最佳分量进行了MOMEDA重构,从重构信号的包络谱中获得了仿真信号故障特征频率及其倍频;最后,为了验证WOA-VMD联合MOMEDA的有效性,在实验台上采集数据,对滚动轴承的外圈故障信号进行了特征提取。实验结果表明:使用该方法可以高效地进行信号的分解寻优,能较为准确地得到仿真信号的故障频率(100 Hz)和实验台提取信号的近似故障频率(87.5 Hz),验证了该方法的有效性。研究结果表明:低信噪比的工况条件下,采用WOA-VMD联合MOMEDA的方法可以有效地提取滚动轴承的故障特征信号,并能从重构信号中提取故障特征频率。 展开更多
关键词 故障信号分 故障信号重构 鲸鱼优化算法 变分模态分 样本 多点最优最小卷积 故障特征频率
下载PDF
基于MOMEDA与CS自适应随机共振的滚动轴承微弱故障特征提取
11
作者 权振亚 张学良 《机械强度》 CAS CSCD 北大核心 2021年第4期771-778,共8页
针对调节非线性系统参数的取值会影响输出信噪比(SNR)的大小这一现象,采用信噪比(SNR)作为随机共振输出评价指标,提出将多点优化最小熵解卷积调整(Multipoint Optimal Minimum Entroy Deconvolution Adjusted,MOMEDA)与布谷鸟自适应随... 针对调节非线性系统参数的取值会影响输出信噪比(SNR)的大小这一现象,采用信噪比(SNR)作为随机共振输出评价指标,提出将多点优化最小熵解卷积调整(Multipoint Optimal Minimum Entroy Deconvolution Adjusted,MOMEDA)与布谷鸟自适应随机共振相结合的方法来提取微弱故障特征频率,仿真分析表明将MOMEDA作为随机共振前处理能够显著提升故障微弱信号,而实验实例验证进一步表明将MOMEDA方法与随机共振相结合能有效地从存在强噪声的信号中提取弱故障信号的特征频率,从而实现滚动轴承弱故障的诊断。 展开更多
关键词 滚动轴承 多点优化最小卷积 微弱故障 布谷鸟算法 随机共振
下载PDF
基于CS和MOMEDA的滚动轴承故障特征提取 被引量:4
12
作者 吕麒鹏 夏均忠 +2 位作者 白云川 郑建波 杨刚刚 《军事交通学院学报》 2019年第8期47-52,共6页
滚动轴承发生故障时会产生周期性脉冲,在噪声干扰下微弱特征难以提取且运算效率低。应用多点优化最小熵解卷积修正(MOMEDA)方法提取故障周期,增强周期性脉冲信号,但在实际运用中该方法提取故障周期的运算效率较低。应用压缩感知(CS)方... 滚动轴承发生故障时会产生周期性脉冲,在噪声干扰下微弱特征难以提取且运算效率低。应用多点优化最小熵解卷积修正(MOMEDA)方法提取故障周期,增强周期性脉冲信号,但在实际运用中该方法提取故障周期的运算效率较低。应用压缩感知(CS)方法对原始信号进行预先处理,通过稀疏表示以及正交匹配追踪算法(OMP)信号重构达到降噪目的。通过试验验证MOMEDA较之其他方法的优越性,CS方法对前者运算效率的提升具有明显效果。 展开更多
关键词 滚动轴承 故障特征提取 压缩感知 多点优化最小卷积修正
下载PDF
LMD-MOMEDA滚动轴承故障特征提取方法研究
13
作者 徐向阳 董辛旻 +1 位作者 王前江 李伟 《机械设计与制造》 北大核心 2022年第5期123-126,131,共5页
由于滚动轴承的故障信号在强噪声的背景之下很容易被淹没,并且具有非线性、非平稳等特点致使故障特征提取困难,在分析了滚动轴承振动信号的特点后提出了一种将局部均值分解(LMD)与多点最优最小熵解卷积(MOMEDA)相结合的故障特征提取方... 由于滚动轴承的故障信号在强噪声的背景之下很容易被淹没,并且具有非线性、非平稳等特点致使故障特征提取困难,在分析了滚动轴承振动信号的特点后提出了一种将局部均值分解(LMD)与多点最优最小熵解卷积(MOMEDA)相结合的故障特征提取方法。首先将滚动轴承的故障信号进行LMD分解,得到一系列的PF分量;然后根据相关系数准则对相关程度较高的PF分量进行重构,用MOMEDA方法对重构后的信号进行降噪,提取故障特征。并通过实验验证了该方法的有效性。 展开更多
关键词 局部均值分(LMD) 多点最优最小卷积(momeda) 滚动轴承 特征提取
下载PDF
基于SK-MOMEDA的滚动轴承微弱故障特征提取
14
作者 梁富旺 孙虎儿 刘柯欣 《机械传动》 北大核心 2021年第2期157-162,共6页
针对滚动轴承早期周期性瞬态冲击不明显及谱峭度在低信噪比情况下分析效果差的问题,提出多点优化最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和谱峭度相结合的轴承微弱故障特征提取方法。首先,采... 针对滚动轴承早期周期性瞬态冲击不明显及谱峭度在低信噪比情况下分析效果差的问题,提出多点优化最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和谱峭度相结合的轴承微弱故障特征提取方法。首先,采用MOMEDA作为前置滤波器对含有强噪声的微弱故障冲击信号进行降噪,突显信号中的周期性冲击性成分;然后,通过谱峭度分析,以最佳中心频率和带宽对降噪的信号进行带通滤波;最后,对滤波后的信号进行Hilbert包络谱分析,便可以准确地获得轴承信号的故障特征频率。仿真信号和实验分析结果表明,该方法可有效增强振动信号的周期性瞬态冲击特征,提取出滚动轴承早期微弱故障特征。 展开更多
关键词 滚动轴承 多点优化最小卷积 谱峭度 微弱故障 特征提取
下载PDF
基于VMD与自适应MOMEDA的回转支承故障诊断 被引量:1
15
作者 郑强 林云树 +1 位作者 吴晓梅 张冲 《组合机床与自动化加工技术》 北大核心 2022年第5期79-82,共4页
针对强背景噪声下的低速重载回转支承难以提取故障特征的问题,提出了一种变分模态分解(VMD)与多点最优最小熵解卷积(MOMEDA)相结合的回转支承故障诊断方法。首先,采用VMD算法对原始振动信号进行分解,从中选出峭度最优分量;其次,利用灰... 针对强背景噪声下的低速重载回转支承难以提取故障特征的问题,提出了一种变分模态分解(VMD)与多点最优最小熵解卷积(MOMEDA)相结合的回转支承故障诊断方法。首先,采用VMD算法对原始振动信号进行分解,从中选出峭度最优分量;其次,利用灰狼优化算法(GWO)优化MOMEDA算法中的参数T,再基于优化的MOMEDA算法增强最优分量中的故障冲击成分;最后,对处理后的最优分量进行包络谱分析,提取故障特征。与VMD-MED方法相比,所提方法能够更准确突出信号中的周期性故障冲击成分,有效提取低速重载回转支承故障特征。 展开更多
关键词 变分模态分 灰狼优化算法 多点最优最小卷积 回转支承 故障诊断
下载PDF
基于特征增强与LSTM的滚动轴承故障诊断方法
16
作者 惠兴胜 于树坤 +2 位作者 纪威 刘士彩 孙波 《机床与液压》 北大核心 2024年第24期214-227,共14页
滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多... 滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多点优化最小熵解卷积(IDEPSO-MOMEDA)算法,对滚动轴承的故障冲击成分进行增强。利用ALIF分解信号,根据峭度-相关系数准则对分解的信号进行重构;利用IDEPSO对MOMEDA进行参数寻优,对重构后的信号进行冲击增强;最后,利用长短时记忆网络(LSTM)对滚动轴承实现端到端的智能故障诊断,以解决人工提取特征的不足。通过滚动轴承实验数据验证了该方法的有效性,并与LSTM、ALIF-LSTM、ALIF-IDEPSO-MOMEDA-RNN、ALIF-IDEPSO-MOMEDA-DBN进行对比分析,使用所提方法ALIF-IDEPSO-MOMEDA-LSTM的故障诊断准确率可达99.78%,进一步证明了该方法的优越性。 展开更多
关键词 滚动轴承 自适应局部迭代滤波(ALIF) 多点优化最小卷积 长短时记忆网络(LSTM) 故障诊断
下载PDF
强噪声背景下地铁牵引电机轴承故障识别方法研究
17
作者 王锦畅 陈威 +2 位作者 彭乐乐 郑树彬 钟倩文 《计算机与数字工程》 2024年第7期2239-2243,共5页
为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征... 为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征信号,最后对故障特征信号进行包络谱分析实现故障识别。现场采集数据验证了该方法的有效性。 展开更多
关键词 牵引电机 轴承故障诊断 多点最优调整的最小卷积 粒子群优化
下载PDF
一种内燃机滚动轴承振动信号降噪方法 被引量:1
18
作者 刘鲲鹏 于明奇 +2 位作者 白云川 李泽华 吕麒鹏 《内燃机与配件》 2018年第15期68-70,共3页
滚动轴承是内燃机中重要的零部件之一,其发生故障时振动信号中的故障信息往往会被噪声淹没。为此应用多点优化最小熵解卷积修正(MOMEDA)增强信号中的故障脉冲成分:首先系统介绍MOMEDA的基本原理,随后通过仿真信号在理论上对其有效性进... 滚动轴承是内燃机中重要的零部件之一,其发生故障时振动信号中的故障信息往往会被噪声淹没。为此应用多点优化最小熵解卷积修正(MOMEDA)增强信号中的故障脉冲成分:首先系统介绍MOMEDA的基本原理,随后通过仿真信号在理论上对其有效性进行分析,最后设计滚动轴承内圈模拟点蚀故障试验证明其在故障特征提取中的作用。结果表明,经MOMEDA降噪处理后,信号的故障冲击成分得到明显突出,能够为后续的故障诊断工作提供方便。 展开更多
关键词 内燃机 滚动轴承 振动信号 降噪 多点优化最小卷积修正
下载PDF
基于MOMEDA和包络谱的齿轮微弱故障特征提取 被引量:10
19
作者 武超 孙虎儿 梁晓华 《机械传动》 CSCD 北大核心 2018年第3期164-168,共5页
复合故障下的齿轮微弱故障易被强故障掩盖而出现漏诊现象,对齿轮复合故障下的微弱故障特征提取进行研究。首先采用多点优化最小熵解卷积调整(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)作为前置滤波器对原信... 复合故障下的齿轮微弱故障易被强故障掩盖而出现漏诊现象,对齿轮复合故障下的微弱故障特征提取进行研究。首先采用多点优化最小熵解卷积调整(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)作为前置滤波器对原信号进行降噪,增强信号中的周期性冲击成分,然后进行Hilbert变换得到包络谱;通过分析其中明显的频率成分识别故障,实现微弱故障特征的提取。仿真信号和变速器故障诊断实例表明,该方法能有效实现齿轮微弱故障特征提取。 展开更多
关键词 齿轮 多点优化最小卷积调整 微弱故障 特征提取
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部