期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用 被引量:18
1
作者 齐咏生 樊佶 +2 位作者 李永亭 高学金 刘利强 《振动与冲击》 EI CSCD 北大核心 2020年第21期140-150,共11页
针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方... 针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方法。使用ARSSD分析故障信号,并定义一个新的复合指标作为目标函数,利用布谷鸟寻优算法(CSA)对高、低品质因子进行优化选择,获得包含瞬态冲击成分的最优低共振分量;计算其多点峭度谱,提取低共振分量中包含的故障冲击周期成分;之后设定适当的周期区间,进行解卷积运算分离不同的故障特征;通过包络解调,分析谱图中突出的故障特征频率进而识别故障类型。实验平台模拟了滚动轴承两种和三种故障的复合情况,并对所提算法进行了验证,结果表明该方法可有效的从复合故障中提取出各类故障特征,实现故障诊断。 展开更多
关键词 振动信号 复合故障 故障诊断 RSSD 最优最小卷积修正
下载PDF
求全局最优解的新算法
2
作者 盛平兴 汤正诠 《应用数学与计算数学学报》 2004年第2期15-23,共9页
利用局部极大值点与动力系统的稳定奇点的对应性,计算代数方程的根、无约束极大值点、有约束极大值点、非线性规划解、及最小二乘解.我们采用了常微分方程数值解的Euler算法及网格初始点的循序迭代算法,并以具体的例子和程序说明创立的... 利用局部极大值点与动力系统的稳定奇点的对应性,计算代数方程的根、无约束极大值点、有约束极大值点、非线性规划解、及最小二乘解.我们采用了常微分方程数值解的Euler算法及网格初始点的循序迭代算法,并以具体的例子和程序说明创立的方法具有通用性,同时考虑了一些存在的问题以便在理论和算法上作进一步的改进. 展开更多
关键词 极大值 全局最优 最小二乘 代数方程 常微分方程 数值 算法 网格 约束
下载PDF
多阶段运输问题及求解运输问题的最小生成树算法
3
作者 薜源福 李勇 《计算机应用》 1986年第4期31-38,共8页
本文从物资供应管理实际问题中抽象出多阶段运输问题,并把它转化为一般的运输问题。采用本文提供的求解运输问题的最小生成树算法求解,极大地节省了内存,提高了运算速度。由于新算法的提出,使得在微机上做较大规模物资供应多阶段最优计... 本文从物资供应管理实际问题中抽象出多阶段运输问题,并把它转化为一般的运输问题。采用本文提供的求解运输问题的最小生成树算法求解,极大地节省了内存,提高了运算速度。由于新算法的提出,使得在微机上做较大规模物资供应多阶段最优计划成为可能。 展开更多
关键词 指针 TP 最小生成树算法 初始基本可行 基本变量 位势法 最小元素法 运算速度 算法步骤 平衡运输问题 最优计划
下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取
4
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分 多点最优最小卷积 滚动轴承 包络谱峰值因子 基尼指数
下载PDF
优化参数VMD和MED在列车齿轮箱滚动轴承故障诊断中的应用 被引量:6
5
作者 李长青 林建辉 胡永旭 《机车电传动》 北大核心 2020年第3期142-147,共6页
针对强噪声情况下列车齿轮箱滚动轴承早期故障特征提取困难的问题,提出基于最小熵解卷积(minimum entropy deconvolution,MED)与参数优化变分模态分解(variational mode decomposition,VMD)相结合的故障诊断方法。首先利用MED对轴承振... 针对强噪声情况下列车齿轮箱滚动轴承早期故障特征提取困难的问题,提出基于最小熵解卷积(minimum entropy deconvolution,MED)与参数优化变分模态分解(variational mode decomposition,VMD)相结合的故障诊断方法。首先利用MED对轴承振动信号进行降噪;其次,采用离散差分进化算法(discrete differential evolution algorithm,DDE)对VMD的参数进行优化搜索,并利用优化参数的变分模态分解算法对降噪后的故障信号进行处理,得到一系列本征模态函数;最后,选择最佳的本征模态函数进行包络分析,从而提取出故障特征。试验结果表明,该方法能有效提取列车齿轮箱滚动轴承故障特征,可用于轴承故障诊断。 展开更多
关键词 高速列车 列车齿轮箱 滚动轴承 最小卷积 变分模态分 参数 离散差分进化算法 故障诊断
原文传递
改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用 被引量:13
6
作者 张守京 慎明俊 +1 位作者 杨静雯 吴芮 《中国机械工程》 EI CAS CSCD 北大核心 2022年第14期1697-1706,共10页
滚动轴承复合故障信号中各故障特征受到传输路径和其他干扰源的影响,在多缺陷共存条件下提取单个缺陷诱发的故障特征存在困难。提出一种基于双参数优化、子带重构改进的共振稀疏分解(RSSD)滚动轴承复合故障诊断方法:首先利用人工鱼群算... 滚动轴承复合故障信号中各故障特征受到传输路径和其他干扰源的影响,在多缺陷共存条件下提取单个缺陷诱发的故障特征存在困难。提出一种基于双参数优化、子带重构改进的共振稀疏分解(RSSD)滚动轴承复合故障诊断方法:首先利用人工鱼群算法自适应选择RSSD的品质因子和分解层数以构造与故障特征匹配的最优小波基,获得包含瞬态冲击的低共振分量;然后依据提出的子带筛选准则选择并重构低共振分量中包含瞬态冲击成分的最佳子带;最后通过多点最优最小熵反卷积(MOMEDA)方法识别并提取重构信号中周期性故障冲击。仿真信号和轴承全寿命周期复合故障信号分析结果表明,与RSSD-MCKD方法相比,所提出方法能有效提取复合故障信号中各故障特征,精确实现轴承复合故障诊断。 展开更多
关键词 共振稀疏分 品质因子 子带重构 多点最优最小卷积
下载PDF
用凸多边形微量增长法求解TSP 被引量:5
7
作者 顾大权 游大鸣 +2 位作者 侯太平 周军 袁媛 《微计算机应用》 2005年第3期262-264,共3页
采用凸多边形微量增长方法,给出了一个求解TSP问题算法。该算法首先找出边界点,生成凸多边形,然后反复从剩余结点中,选取最小增量的点,插入到多边形中,最后得到TSP的路径。算法实现容易、运行速度快。采用该算法生成的CTSP路径接近其最... 采用凸多边形微量增长方法,给出了一个求解TSP问题算法。该算法首先找出边界点,生成凸多边形,然后反复从剩余结点中,选取最小增量的点,插入到多边形中,最后得到TSP的路径。算法实现容易、运行速度快。采用该算法生成的CTSP路径接近其最优解。 展开更多
关键词 凸多边形 微量 增长法 TSP问题 算法实现 运行速度 边界 最优 路径 最小 接近
下载PDF
基于PCA和MK-MOMEDA的特征频率提取算法及其应用 被引量:2
8
作者 郑嘉伟 刘其洪 +2 位作者 李伟光 赵学智 李国臣 《机械传动》 北大核心 2020年第12期146-152,共7页
针对柔性薄壁轴承故障特征频率提取的问题,提出了主成分分析(PCA)与多点最优调整的最小熵解卷积(MOMEDA)相结合的特征频率提取算法。算法中用PCA对原始信号作降噪处理,获得重构信号,利用多点峭度(MKurt)提取重构信号中的周期性冲击信号... 针对柔性薄壁轴承故障特征频率提取的问题,提出了主成分分析(PCA)与多点最优调整的最小熵解卷积(MOMEDA)相结合的特征频率提取算法。算法中用PCA对原始信号作降噪处理,获得重构信号,利用多点峭度(MKurt)提取重构信号中的周期性冲击信号的周期,对理论周期进行修正,进而得到精确的解卷积周期,通过MOMEDA对重构信号进行增强,突出其周期性冲击,可以更有效地提取特征频率。将此方法应用到柔性薄壁轴承的故障特征频率提取上,并与最大相关峭度解卷积(MCKD)算法作对比。结果表明,该方法可将轴承故障冲击与因轴承长短轴交替而产生的周期性冲击分离,消除这种正常的周期性冲击的干扰,有效提取信号中的故障特征频率,效果优于最大相关峭度解卷积算法。 展开更多
关键词 主成分分析 多点最优调整的最小卷积 多点峭度 特征频率提取
下载PDF
基于格点搜索法的MOMEDA在滚动轴承故障特征提取中的应用 被引量:4
9
作者 于明奇 夏均忠 +2 位作者 白云川 吕麒鹏 刘鲲鹏 《军事交通学院学报》 2018年第3期50-55,共6页
针对背景噪声下故障轴承产生的周期性脉冲特征微弱难以提取问题,提出多点优化最小熵解卷积修正(MOMEDA)方法,并利用格点搜索法解决其滤波器设置需人工干预问题。首先以频域谱负熵为寻优目标,利用格点搜索法迭代求解MOMEDA滤波器最优阶数... 针对背景噪声下故障轴承产生的周期性脉冲特征微弱难以提取问题,提出多点优化最小熵解卷积修正(MOMEDA)方法,并利用格点搜索法解决其滤波器设置需人工干预问题。首先以频域谱负熵为寻优目标,利用格点搜索法迭代求解MOMEDA滤波器最优阶数;其次应用该参数寻优方法下的MOMEDA对仿真信号和轴承内圈故障信号中的周期性脉冲成分进行增强,并通过平方包络谱提取微弱故障特征;然后应用受试者工作特征(ROC)曲线评估该方法的灵敏性和特异性。该方法可有效增强故障脉冲成分,且具有良好的灵敏性和特异性。 展开更多
关键词 滚动轴承 故障特征提取 谱负 多点最小卷积修正(MOMEDA) ROC曲线
下载PDF
应用CEEMD降噪与自适应MOMEDA的轴承故障特征提取方法 被引量:2
10
作者 宋宇博 张宇飞 《中国测试》 CAS 北大核心 2024年第2期180-188,共9页
针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoi... 针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)的滚动轴承故障特征提取方法。将CEEMD与小波阈值降噪结合对原始信号进行降噪;提出一种新的复合指标:峭度-包络波形因子,并以其为适应度函数设计变步长搜索法,对MOMEDA算法的滤波器长度进行寻优;基于寻优的滤波器长度对降噪的信号进行MOMEDA解卷积,并通过包络谱分析识别滚动轴承的故障特征频率。对比实验结果表明:以该文寻找的最优滤波器长度作为MOMEDA的参数,解卷积后包络谱故障频率更加清晰;且相较于传统的MOMEDA算法和小波阈值降噪-MOMEDA方法,该文提出的方法能够更有效地提取强噪声背景下微弱的故障特征信息。 展开更多
关键词 滚动轴承 故障诊断 多点最优最小卷积 互补集合经验模态分 小波阈值降噪
下载PDF
基于MOMEDA与LMD的往复压缩机活塞杆沉降信号故障特征提取方法研究
11
作者 何明 方燚 +5 位作者 孙瑞亮 李豪 刘世成 范文俊 闫慧敏 舒悦 《流体机械》 CSCD 北大核心 2024年第11期72-78,共7页
针对传统经验模态分解(EMD)等方法在当前往复压缩机活塞杆故障诊断中故障特征提取能力不足的问题,本文通过电涡流传感器获得往复压缩机活塞杆的沉降信号,利用多点最优最小熵解卷积算法(MOMEDA)对信号周期进行自适应调整去干扰处理,再对... 针对传统经验模态分解(EMD)等方法在当前往复压缩机活塞杆故障诊断中故障特征提取能力不足的问题,本文通过电涡流传感器获得往复压缩机活塞杆的沉降信号,利用多点最优最小熵解卷积算法(MOMEDA)对信号周期进行自适应调整去干扰处理,再对其进行局部均值分解(LMD),得到信号所对应的多个乘积函数(PF)分量的特征参数因子,包括偏度系数gi、峭度系数qi和总能量比Ei/E。对比活塞杆正常和故障状态(支撑环磨损、紧固元件松动和早期裂纹)下的特征参数变化,结果显示:在活塞杆支撑环磨损情况下,g1和q3的值将分别达到-0.02和1.60,与正常值相差3~5倍;活塞杆紧固原件松动情况下,g1,g3,q1,q3均会出现大幅度偏差,甚至呈现出超过正常值10倍以上的差距;活塞杆早期裂纹情况下,低阶分量g4和q4会出现一些变化,分别达到-1.30和1.60;MOMEDA与LMD相结合的方法,能够准确、有效地对往复压缩机活塞杆沉降信号进行判断,相比于传统的EMD信号分析方法,该方法在活塞杆故障诊断领域展现出更高的实用性。 展开更多
关键词 多点最优最小熵解卷积算法 局部均值分 经验模态分 故障诊断 往复压缩机 活塞杆
下载PDF
基于ASMVMD和MOMEDA的齿轮特征提取方法
12
作者 唐贵基 曾鹏飞 朱爽 《机电工程》 CAS 北大核心 2024年第12期2174-2184,共11页
针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以... 针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以SMVMD分解后各个通道的所有分量的平均包络谱峰值因子(Ec)之和的相反数作为寻优的适应度函数,确定了最大惩罚因子α和最大分解模态数k的最优值;然后,采用ASMVMD方法对齿轮多通道故障数据进行了自适应分解,根据Ec指标提取了各通道特定分量,并将这些分量相加,进行了信号重构;最后,采用MOMEDA解卷积处理了重构信号,进一步强化了齿轮故障的冲击特性,并利用包络谱分析解卷积信号,提取了齿轮的故障特征频率。研究结果表明:通过仿真信号和模拟实验信号的分析,可知利用ASMVMD-MOMEDA相结合的方法处理得到的信号降噪效果显著,能有效抑制无关干扰成分的影响,从包络谱中可以清晰地看到故障频率的前几阶倍频;与多元经验模态分解(MEMD)-MOMEDA相结合的方法进行对比,发现采用ASMVMD-MOMEDA方法得到的包络谱较MEMD-MOMEDA方法的谱线更加干净,各阶倍频更加明显,进一步证明ASMVMD-MOMEDA方法可以准确提取齿轮故障特征。 展开更多
关键词 齿轮损伤特征 故障特征提取 自适应逐次多元变分模态分 多点最优最小卷积 多通道 卷积 包络谱峰值因子 信号重构
下载PDF
基于迭代SGMD与改进MOMEDA的滚动轴承微弱故障诊断
13
作者 王富珂 高丙朋 蔡鑫 《组合机床与自动化加工技术》 北大核心 2024年第12期145-150,157,共7页
针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭... 针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭度谱确定MOMEDA的故障周期,利用白鹭群优化算法(ESOA)对滤波器长度进行自适应寻优,通过IMOMEDA对最优分量进行解卷积处理;最后,对解卷积处理后的信号进行包络谱分析,提取故障特征频率完成故障诊断。仿真及实验分析结果表明,所提方法能有效提取强背景噪声下的滚动轴承微弱故障特征信息。 展开更多
关键词 滚动轴承 迭代辛几何模态分 改进多点最优最小卷积调整 综合指标 白鹭群算法 故障诊断
下载PDF
基于特征增强与LSTM的滚动轴承故障诊断方法
14
作者 惠兴胜 于树坤 +2 位作者 纪威 刘士彩 孙波 《机床与液压》 北大核心 2024年第24期214-227,共14页
滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多... 滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多点优化最小熵解卷积(IDEPSO-MOMEDA)算法,对滚动轴承的故障冲击成分进行增强。利用ALIF分解信号,根据峭度-相关系数准则对分解的信号进行重构;利用IDEPSO对MOMEDA进行参数寻优,对重构后的信号进行冲击增强;最后,利用长短时记忆网络(LSTM)对滚动轴承实现端到端的智能故障诊断,以解决人工提取特征的不足。通过滚动轴承实验数据验证了该方法的有效性,并与LSTM、ALIF-LSTM、ALIF-IDEPSO-MOMEDA-RNN、ALIF-IDEPSO-MOMEDA-DBN进行对比分析,使用所提方法ALIF-IDEPSO-MOMEDA-LSTM的故障诊断准确率可达99.78%,进一步证明了该方法的优越性。 展开更多
关键词 滚动轴承 自适应局部迭代滤波(ALIF) 多点最小卷积 长短时记忆网络(LSTM) 故障诊断
下载PDF
强噪声背景下地铁牵引电机轴承故障识别方法研究
15
作者 王锦畅 陈威 +2 位作者 彭乐乐 郑树彬 钟倩文 《计算机与数字工程》 2024年第7期2239-2243,共5页
为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征... 为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征信号,最后对故障特征信号进行包络谱分析实现故障识别。现场采集数据验证了该方法的有效性。 展开更多
关键词 牵引电机 轴承故障诊断 多点最优调整的最小卷积 粒子群
下载PDF
基于IEWT-MOMEDA-FSC的滚动轴承故障诊断
16
作者 吴振雄 王林军 +2 位作者 邹腾枭 陈梦华 陈保家 《三峡大学学报(自然科学版)》 北大核心 2024年第1期92-98,共7页
针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,... 针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,通过增强包络谱的极值点来自适应地划分频谱,以分割的频谱为边界构建小波滤波器组将信号分解为多个IMF分量,利用相关峭度准则筛选出有效的分量进行叠加;其次,用MOMEDA对其进行降噪处理,将降噪后的信号进行快速谱相关分析,得到增强包络谱图;最后,将增强包络谱图中幅值较高的频率与故障频率对比,判定其失效形式,用所提出的方法对实测轴承故障信号进行分析验证.结果表明,所提出的方法能有效降低噪音干扰且增强信号故障冲击特性,在噪声环境下具有较强的故障特征提取能力. 展开更多
关键词 改进经验小波变换 多点最优最小卷积 快速谱相关 峭度 互相关
下载PDF
基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取 被引量:16
17
作者 刘岩 伍星 +1 位作者 刘韬 陈庆 《振动与冲击》 EI CSCD 北大核心 2019年第23期219-229,共11页
轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微... 轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微弱故障提取效果并不理想。针对这一问题,将改进多点优化最小熵解卷积(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)与VMD相结合,研究了滤波器长度对MOMEDA效果的影响,提出基于进退法确定最优滤波器长度的自适应MOMEDA方法。利用自适应MOMEDA对信号降噪并避免传统MED迭代以及滤波后可能出现的虚假峰值。将自适应MOMEDA降噪后的信号使用VMD进行分解,然后依据谱峭度大小进行重构,对重构之后的信号进行故障特征提取,取得了较好的效果。最后通过实验验证了方法的可行性及有效性。 展开更多
关键词 多点最小卷积 变分模态分 谱峭度 滚动轴承早期故障 进退法
下载PDF
基于SK‑MOMEDA的风电机组轴承复合故障特征分离提取 被引量:7
18
作者 向玲 李京蓄 +1 位作者 胡爱军 李营 《振动.测试与诊断》 EI CSCD 北大核心 2021年第4期644-651,826,共9页
针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvo... 针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的风电机组滚动轴承复合故障特征分离提取方法。首先,对复合故障信号进行谱峭度分析,选出能量较大的共振频带,并通过构建带通滤波器对相应的共振频带进行滤波,对滤波信号进行包络谱分析,对单一故障特征进行分离提取;其次,对未能实现单一故障特征提取的滤波信号进行多点峭度谱分析并确定故障周期,应用MOMEDA完成后续分离提取过程。仿真信号和工程应用分析结果表明,该方法能够准确且有效地实现轴承复合故障特征的分离提取。 展开更多
关键词 风电机组 轴承 复合故障 分离提取 谱峭度 多点最优调整的最小卷积
下载PDF
基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法 被引量:23
19
作者 胡爱军 严家祥 白泽瑞 《振动与冲击》 EI CSCD 北大核心 2021年第7期268-273,共6页
风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted... 风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和增强倒频谱的风电机组齿轮箱多故障诊断方法。依据齿轮和轴承不同部位的故障特征频率设置合理的解卷积周期,利用MOMEDA对原始信号进行预处理;再通过增强倒频谱进一步抑制噪声干扰和增强故障特征;将增强倒频谱中的突出成分与齿轮箱故障特征频率对比,判断故障类型。实际风电机组齿轮箱多故障振动试验数据分析结果表明,该方法可以有效地提取出齿轮箱多故障特征信息。 展开更多
关键词 齿轮箱 多故障诊断 特征提取 多点最优最小卷积(MOMEDA) 增强倒频谱
下载PDF
基于MOMEDA与双谱分析的滚动轴承早期故障诊断 被引量:6
20
作者 袁洪芳 穆坤 +1 位作者 马若桐 王华庆 《测控技术》 2019年第8期61-64,68,共5页
滚动轴承早期故障阶段,故障特征微弱且环境噪声干扰严重,采集数据包含大量噪声信息,传统的包络谱分析难以提取故障特征信息。双谱分析理论上可以抑制高斯噪声,但很难从强背景噪声下提取出微弱故障特征。而多点最优调整的最小熵解卷积(Mu... 滚动轴承早期故障阶段,故障特征微弱且环境噪声干扰严重,采集数据包含大量噪声信息,传统的包络谱分析难以提取故障特征信息。双谱分析理论上可以抑制高斯噪声,但很难从强背景噪声下提取出微弱故障特征。而多点最优调整的最小熵解卷积(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)方法能增强信号中的冲击特征,但其效果和故障信号周期区间等参数有关。利用MOMEDA与双谱分析进行信号处理,将提取到的信号高阶谱特征作为滚动轴承早期故障分类依据。利用MOMEDA方法对采集信号进行滤波处理,提取出有冲击特征的时域信号;对特征增强的信号进行双谱分析,从高阶谱中提取故障特征。经过仿真信号分析和实际轴承故障信号验证,该方法能有效地提取出滚动轴承早期故障特征,实现故障诊断。 展开更多
关键词 多点最优调整最小卷积 双谱分析 故障特征提取 强噪声环境
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部