疲劳驾驶是引发交通事故的主要原因之一,为了预防疲劳驾驶的发生,基于多信息融合方法研究了驾驶员疲劳检测技术。通过改进的Yolov3算法与卡尔曼滤波算法的结合进行人脸检测。利用一种基于提升树的算法实现脸部关键点检测,并基于单位时...疲劳驾驶是引发交通事故的主要原因之一,为了预防疲劳驾驶的发生,基于多信息融合方法研究了驾驶员疲劳检测技术。通过改进的Yolov3算法与卡尔曼滤波算法的结合进行人脸检测。利用一种基于提升树的算法实现脸部关键点检测,并基于单位时间里眼睛闭合时间所占的百分比(percentage of eyelid closure over the pupil over time,PERCLOS),最长持续闭眼时间和哈欠次数这3个特征进行多特征融合的疲劳检测。在实车录制数据集上进行验证,实验结果表明:所提方法平均识别正确率达92.5%,具有较高的准确率,针对复杂环境有较强的鲁棒性,对于将来的研究有着重大意义。展开更多
文摘疲劳驾驶是引发交通事故的主要原因之一,为了预防疲劳驾驶的发生,基于多信息融合方法研究了驾驶员疲劳检测技术。通过改进的Yolov3算法与卡尔曼滤波算法的结合进行人脸检测。利用一种基于提升树的算法实现脸部关键点检测,并基于单位时间里眼睛闭合时间所占的百分比(percentage of eyelid closure over the pupil over time,PERCLOS),最长持续闭眼时间和哈欠次数这3个特征进行多特征融合的疲劳检测。在实车录制数据集上进行验证,实验结果表明:所提方法平均识别正确率达92.5%,具有较高的准确率,针对复杂环境有较强的鲁棒性,对于将来的研究有着重大意义。