针对新一代多用途视频编码(versatile video coding,VVC)标准相比上一代高效视频编码(high efficiency video coding,HEVC)采用了更多数目的时空预测模式,为相邻编码帧带来了更强的帧间相关性的问题,基于深度增强学习方法提出了一种适用...针对新一代多用途视频编码(versatile video coding,VVC)标准相比上一代高效视频编码(high efficiency video coding,HEVC)采用了更多数目的时空预测模式,为相邻编码帧带来了更强的帧间相关性的问题,基于深度增强学习方法提出了一种适用于VVC编码器的码率控制算法。首先选择合适的模型输入信息,包括帧间相关信息、分层编码结构信息和视频内容信息等;其次利用上述信息,结合长短期记忆(long short-term memory,LSTM)神经网络和增强学习方法,构建基于深度增强学习的帧间量化参数预测模型,以优化VVC编码器的码率控制过程;最后验证所提出算法的性能,将所提出算法在VTM 5.1平台实现,并与VVC源编码器进行性能对比。测试结果表明,在相同码率条件下,所提出算法相比于VVC源编码器,实现了BDBR平均节省1.81%和BDPSNR提升0.14 dB。展开更多
文摘针对新一代多用途视频编码(versatile video coding,VVC)标准相比上一代高效视频编码(high efficiency video coding,HEVC)采用了更多数目的时空预测模式,为相邻编码帧带来了更强的帧间相关性的问题,基于深度增强学习方法提出了一种适用于VVC编码器的码率控制算法。首先选择合适的模型输入信息,包括帧间相关信息、分层编码结构信息和视频内容信息等;其次利用上述信息,结合长短期记忆(long short-term memory,LSTM)神经网络和增强学习方法,构建基于深度增强学习的帧间量化参数预测模型,以优化VVC编码器的码率控制过程;最后验证所提出算法的性能,将所提出算法在VTM 5.1平台实现,并与VVC源编码器进行性能对比。测试结果表明,在相同码率条件下,所提出算法相比于VVC源编码器,实现了BDBR平均节省1.81%和BDPSNR提升0.14 dB。