为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法...为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法的雷达、电子支援措施(electronic support measures,ESM)综合多目标检测、跟踪与识别方法。该方法首先根据不同类别目标设计各自的多目标多模型高斯混合概率假设密度滤波器,并在各滤波器处理过程中同时对高斯项进行编号;然后,根据目标速度与加速度模型信息进行高斯项综合与类别判决,同时根据ESM测量信息进行型号判决;最后,通过航迹综合管理,形成具有运动状态信息以及类别、型号、航迹编号信息的确定航迹。仿真实验验证了该方法能够有效综合雷达、ESM测量数据,在进行多目标检测、跟踪的同时进行正确的类别、型号判决,并形成确定航迹。展开更多
为了快速准确地检测并跟踪多目标对象,提出了一种基于全方位视觉的多目标对象跟踪方法.首先采用全方位视觉传感器(ODVS)实时地采集现场360°全景视频图像;接着融合运动历史图像算法(MHI)和运动能量算法(MEI)实现了快速高效的MHoEI(M...为了快速准确地检测并跟踪多目标对象,提出了一种基于全方位视觉的多目标对象跟踪方法.首先采用全方位视觉传感器(ODVS)实时地采集现场360°全景视频图像;接着融合运动历史图像算法(MHI)和运动能量算法(MEI)实现了快速高效的MHoEI(Motion History or Energy Images)自动跟踪算法,对多目标对象进行检测和跟踪;最后,本文采用面向对象技术融合目标对象进行匹配跟踪实验结果表明本文提出的方法能较好地跟踪多目标对象,具有鲁棒性高、运算量小、便于硬件实现、高效等优点.展开更多
文摘为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法的雷达、电子支援措施(electronic support measures,ESM)综合多目标检测、跟踪与识别方法。该方法首先根据不同类别目标设计各自的多目标多模型高斯混合概率假设密度滤波器,并在各滤波器处理过程中同时对高斯项进行编号;然后,根据目标速度与加速度模型信息进行高斯项综合与类别判决,同时根据ESM测量信息进行型号判决;最后,通过航迹综合管理,形成具有运动状态信息以及类别、型号、航迹编号信息的确定航迹。仿真实验验证了该方法能够有效综合雷达、ESM测量数据,在进行多目标检测、跟踪的同时进行正确的类别、型号判决,并形成确定航迹。
文摘为了快速准确地检测并跟踪多目标对象,提出了一种基于全方位视觉的多目标对象跟踪方法.首先采用全方位视觉传感器(ODVS)实时地采集现场360°全景视频图像;接着融合运动历史图像算法(MHI)和运动能量算法(MEI)实现了快速高效的MHoEI(Motion History or Energy Images)自动跟踪算法,对多目标对象进行检测和跟踪;最后,本文采用面向对象技术融合目标对象进行匹配跟踪实验结果表明本文提出的方法能较好地跟踪多目标对象,具有鲁棒性高、运算量小、便于硬件实现、高效等优点.