期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GA-1DLCNN method and its application in bearing fault diagnosis 被引量:7
1
作者 Yang Zhenbo Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期36-42,共7页
Due to the fact that the vibration signal of the rotating machine is one-dimensional and the large-scale convolution kernel can obtain a better perception field, on the basis of the classical convolution neural networ... Due to the fact that the vibration signal of the rotating machine is one-dimensional and the large-scale convolution kernel can obtain a better perception field, on the basis of the classical convolution neural network model(LetNet-5), one-dimensional large-kernel convolution neural network(1 DLCNN) is designed. Since the hyper-parameters of 1 DLCNN have a greater impact on network performance, the genetic algorithm(GA) is used to optimize the hyper-parameters, and the method of optimizing the parameters of 1 DLCNN by the genetic algorithm is named GA-1 DLCNN. The experimental results show that the optimal network model based on the GA-1 DLCNN method can achieve 99.9% fault diagnosis accuracy, which is much higher than those of other traditional fault diagnosis methods. In addition, the 1 DLCNN is compared with one-dimencional small-kernel convolution neural network(1 DSCNN) and the classical two-dimensional convolution neural network model. The input sample lengths are set to be 128, 256, 512, 1 024, and 2 048, respectively, and the final diagnostic accuracy results and the visual scatter plot show that the effect of 1 DLCNN is optimal. 展开更多
关键词 one-dimensional convolution neural network large-size convolution kernel hyper-parameter optimization genetic algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部