This paper describes a new weather generator e the 10-state empirical model e that combines a 10-state, first-order Markov chain with a non-parametric precipitation amounts model. Using a doubly-stochastic transition-...This paper describes a new weather generator e the 10-state empirical model e that combines a 10-state, first-order Markov chain with a non-parametric precipitation amounts model. Using a doubly-stochastic transition-matrix results in a weather generator for which the overall precipitation distribution(including both wet and dry days) and the temporal-correlation can be modified independently for climate change studies. This paper assesses the ability of the 10-state empirical model to simulate daily area-average precipitation in the Torne River catchment in northern Sweden/western Finland in the context of 3 other models: a 10-state model with a parametric(Gamma) amounts model; a wet/dry chain with the empirical amounts model; and a wet/dry chain with the parametric amounts model. The ability to accurately simulate the distribution of multi-day precipitation in the catchment is the primary consideration.Results showed that the 10-state empirical model represented accumulated 2- to 14-day precipitation most realistically. Further, the distribution of precipitation on wet days in the catchment is related to the placement of a wet day within a wet-spell, and the 10-state models represented this realistically, while the wet/dry models did not. Although all four models accurately reproduced the annual and monthly averages in the training data, all models underestimated inter-annual and inter-seasonal variance. Even so, the 10-state empirical model performed best.We conclude that the multi-state model is a promising candidate for hydrological applications, as it simulates multi-day precipitation well, but that further development is required to improve the simulation of interannual variation.展开更多
China is one of the countries most severely suffering from tropical cyclones. The exact and timely forecasting and warning is of significant importance in fighting against tropical cyclones and mitigating their impact...China is one of the countries most severely suffering from tropical cyclones. The exact and timely forecasting and warning is of significant importance in fighting against tropical cyclones and mitigating their impacts on China. The numerical weather prediction (NWP) system for tropical cyclone rainfall and strong wind is going to play a more and more important role. There is also a need for timely and user friendly modem warning services in order to provide the governments and relevant authorities at all levels and general public with typhoon forecasts and information about the associated disasters and response strategy services.展开更多
基金Financial support for this study by the Swedish Civil Contingencies Agency (2011-3778), though the project "Future rainfall and flooding in Sweden:a framework to support climate adaptation actions"
文摘This paper describes a new weather generator e the 10-state empirical model e that combines a 10-state, first-order Markov chain with a non-parametric precipitation amounts model. Using a doubly-stochastic transition-matrix results in a weather generator for which the overall precipitation distribution(including both wet and dry days) and the temporal-correlation can be modified independently for climate change studies. This paper assesses the ability of the 10-state empirical model to simulate daily area-average precipitation in the Torne River catchment in northern Sweden/western Finland in the context of 3 other models: a 10-state model with a parametric(Gamma) amounts model; a wet/dry chain with the empirical amounts model; and a wet/dry chain with the parametric amounts model. The ability to accurately simulate the distribution of multi-day precipitation in the catchment is the primary consideration.Results showed that the 10-state empirical model represented accumulated 2- to 14-day precipitation most realistically. Further, the distribution of precipitation on wet days in the catchment is related to the placement of a wet day within a wet-spell, and the 10-state models represented this realistically, while the wet/dry models did not. Although all four models accurately reproduced the annual and monthly averages in the training data, all models underestimated inter-annual and inter-seasonal variance. Even so, the 10-state empirical model performed best.We conclude that the multi-state model is a promising candidate for hydrological applications, as it simulates multi-day precipitation well, but that further development is required to improve the simulation of interannual variation.
文摘China is one of the countries most severely suffering from tropical cyclones. The exact and timely forecasting and warning is of significant importance in fighting against tropical cyclones and mitigating their impacts on China. The numerical weather prediction (NWP) system for tropical cyclone rainfall and strong wind is going to play a more and more important role. There is also a need for timely and user friendly modem warning services in order to provide the governments and relevant authorities at all levels and general public with typhoon forecasts and information about the associated disasters and response strategy services.