Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the c...Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.展开更多
If a semicircular element and the diagonal subalgebra of a matrix algebra are free in a finite von Neumann algebra (with respect to a normal trace), then, up to the conjugation by a diagonal unitary element, all ent...If a semicircular element and the diagonal subalgebra of a matrix algebra are free in a finite von Neumann algebra (with respect to a normal trace), then, up to the conjugation by a diagonal unitary element, all entries of the semicircular element are uniquely determined in the sense of (joint) distribution. Suppose a selfadjoint element is free with the diagonal subalgebra. Then, in the matrix decomposition of the selfa^tjoint element, any two entries cannot be free with each other unless the selfadjoint element is semicircular. We also define a "matricial distance" between two elements and show that such distance for two free semicircular elements in a finite von Neumann algebra is nonzero and independent of the properties of the von Neumann algebra.展开更多
基金This work is supported by the Natural Science Foundation of Fujian Province of China (No. Z0511010)the Natural Science Foundation of China (No. 10571012).
文摘Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.
文摘If a semicircular element and the diagonal subalgebra of a matrix algebra are free in a finite von Neumann algebra (with respect to a normal trace), then, up to the conjugation by a diagonal unitary element, all entries of the semicircular element are uniquely determined in the sense of (joint) distribution. Suppose a selfadjoint element is free with the diagonal subalgebra. Then, in the matrix decomposition of the selfa^tjoint element, any two entries cannot be free with each other unless the selfadjoint element is semicircular. We also define a "matricial distance" between two elements and show that such distance for two free semicircular elements in a finite von Neumann algebra is nonzero and independent of the properties of the von Neumann algebra.