Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed t...Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed to systematically investigate the influence of perforation parameters, such as perforation density, perforation orientation, perforation diameter, and perforation length as well as wellbore ellipticity, in vertical wells on the formation fracturing pressure. Based on a six-month simulation research in the University of Petroleum, China, several conclusions are drawn for the first time. Perforation density and perforation orientation angle are the most important parameters controlling the formation fracturing pressure. As the perforation density increases, the fracturing pressure decreases, not linearly but progressively. The fracturing pressure increases with the perforation orientation angle only when the angle is less than 45 degrees, and the relationship becomes very flat when the angle is 45 degrees. However, with regards to the perforation diameter and perforation length, their influences are much slighter. The wellbore ellipticity has a significant effect on the formation fracturing pressure. It is obvious that fracturing pressure increases linearly with the ellipticity of the wellbore.展开更多
A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypi...A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil.展开更多
Lotus-type porous silicon with elongated pores was fabricated by unidirectional solidification under pressurized hydrogen. Porosity, pore diameter, and pore length can be adjusted by changing solidification speed and ...Lotus-type porous silicon with elongated pores was fabricated by unidirectional solidification under pressurized hydrogen. Porosity, pore diameter, and pore length can be adjusted by changing solidification speed and hydrogen pressure. The porosity of the ingot is nearly constant under different solidification speeds, but decreases with the increase of hydrogen pressure. The overall porosities of ingots fabricated at different hydrogen pressures were evaluated through a theoretical model. Findings are in good agreement with experimental values. The average pore diameter and pore length increase simultaneously while the average pore aspect ratio changes slightly with the decreases of solidification speed and hydrogen pressure. The average pore length is raised from 7 to 24 mm and the pore aspect ratio is raised from 8 to 20 respectively with the average pore diameter promoted by about 0.3 mm through improving the superheat degree of the melt from 200 to 300 K.展开更多
ZSM-5 plates with a perpendicular intergrowth structure was synthesized by using a simple amine as the structure directing agent under hydrothermal conditions,in which the mother plate and the perpendicularly standing...ZSM-5 plates with a perpendicular intergrowth structure was synthesized by using a simple amine as the structure directing agent under hydrothermal conditions,in which the mother plate and the perpendicularly standing plates oriented along the(010)and(100)planes of MFI crystals,respectively.During the crystallization process,the mother plate was initially formed on the surface of the amorphous solid gel,while a set of parallel plates perpendicularly grew on its surface,via a homogeneous nucleation mechanism.The mother plate and the perpendicular plates had a similar thickness of 100-200 nm and were characterized by considerably shortened straight and zigzag 10 member ring pores,respectively.This unique intergrowth structure greatly facilitated the diffusion of the reactive molecules in HZSM-5 crystals during methanol conversion to hydrocarbons.展开更多
Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at ...Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.展开更多
Porous titanium with porosity of 60% was prepared by metal injection molding(MIM),and coated with gelatin sustained-release microspheres which were made by improved emulsified cold condensation method.The effects of...Porous titanium with porosity of 60% was prepared by metal injection molding(MIM),and coated with gelatin sustained-release microspheres which were made by improved emulsified cold condensation method.The effects of porous titanium coated with insulin-like growth factor-1(IGF-1) and transforming growth factor-β1(TGF-β1) gelatin microspheres on the function of MG63 cells were evaluated in vitro.The results show that porous titanium coated with gelatin sustained-release microspheres has no cytotoxicity.The IGF-1 and TGF-β1 loading concentrations are positively correlative with the proliferation and differentiation of MG63 after co-culturing with the concentrations of IGF-1 and TGF-β1 gelatin microspheres in the range of 0.1-10 ng/mg and 0.25-2.5 ng/mg,respectively.The MG63 cells exhibit the best proliferation and differentiation with the IGF-1 and TGF-β1 loading concentrations of 10 ng/mg and 2.5 ng/mg,respectively.The joint application of IGF-1 and TGF-β1 group,which promote adhesion,proliferation and differentiation of MG63 cells,is superior to a single application group.展开更多
文摘Hydraulic fracturing treatments of oil wells are greatly affected by the perforation parameters selected. The three-dimensional finite element model together with the tensile criterion of rock materials is employed to systematically investigate the influence of perforation parameters, such as perforation density, perforation orientation, perforation diameter, and perforation length as well as wellbore ellipticity, in vertical wells on the formation fracturing pressure. Based on a six-month simulation research in the University of Petroleum, China, several conclusions are drawn for the first time. Perforation density and perforation orientation angle are the most important parameters controlling the formation fracturing pressure. As the perforation density increases, the fracturing pressure decreases, not linearly but progressively. The fracturing pressure increases with the perforation orientation angle only when the angle is less than 45 degrees, and the relationship becomes very flat when the angle is 45 degrees. However, with regards to the perforation diameter and perforation length, their influences are much slighter. The wellbore ellipticity has a significant effect on the formation fracturing pressure. It is obvious that fracturing pressure increases linearly with the ellipticity of the wellbore.
基金The Natural Science Foundation of Hubei Province(No.2007ABA094)
文摘A centrifuge modeling test and a three-dimensional finite element analysis(FEA)of super-long rock-socketed bored pile groups of the Tianxingzhou Bridge are proposed.Based on the similarity theory,different prototypical materials are simulated using different indicators in the centrifuge model.The silver sand,the shaft and the pile cap are simulated according to the natural density,the compressive stiffness and the bending stiffness,respectively.The finite element method(FEM)is implemented and analyzed in ANSYS,in which the stress field during the undisturbed soil stage,the boring stage,the concrete-casting stage and the curing stage are discussed in detail.Comparisons in terms of load-settlement,shaft axial force distribution and lateral friction between the numerical results and the test data are carried out to investigate the bearing behaviors of super-long rock-socketed bored pile groups under loading and unloading conditions.Results show that there is a good agreement between the centrifuge modeling tests and the FEM.In addition,the load distribution at the pile top is complicated,which is related to the stiffness of the cap,the corresponding assumptions and the analysis method.The shaft axial force first increases slightly with depth then decreases sharply,and the rate of decrease in rock is greater than that in sand and soil.
基金Project(51271096)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0310)supported by the Program for New Century Excellent Talents in University,China
文摘Lotus-type porous silicon with elongated pores was fabricated by unidirectional solidification under pressurized hydrogen. Porosity, pore diameter, and pore length can be adjusted by changing solidification speed and hydrogen pressure. The porosity of the ingot is nearly constant under different solidification speeds, but decreases with the increase of hydrogen pressure. The overall porosities of ingots fabricated at different hydrogen pressures were evaluated through a theoretical model. Findings are in good agreement with experimental values. The average pore diameter and pore length increase simultaneously while the average pore aspect ratio changes slightly with the decreases of solidification speed and hydrogen pressure. The average pore length is raised from 7 to 24 mm and the pore aspect ratio is raised from 8 to 20 respectively with the average pore diameter promoted by about 0.3 mm through improving the superheat degree of the melt from 200 to 300 K.
文摘ZSM-5 plates with a perpendicular intergrowth structure was synthesized by using a simple amine as the structure directing agent under hydrothermal conditions,in which the mother plate and the perpendicularly standing plates oriented along the(010)and(100)planes of MFI crystals,respectively.During the crystallization process,the mother plate was initially formed on the surface of the amorphous solid gel,while a set of parallel plates perpendicularly grew on its surface,via a homogeneous nucleation mechanism.The mother plate and the perpendicular plates had a similar thickness of 100-200 nm and were characterized by considerably shortened straight and zigzag 10 member ring pores,respectively.This unique intergrowth structure greatly facilitated the diffusion of the reactive molecules in HZSM-5 crystals during methanol conversion to hydrocarbons.
文摘Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.
基金Project(2013zzts306)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(225)supported by the High Level Health Personnel in Hunan Province,China
文摘Porous titanium with porosity of 60% was prepared by metal injection molding(MIM),and coated with gelatin sustained-release microspheres which were made by improved emulsified cold condensation method.The effects of porous titanium coated with insulin-like growth factor-1(IGF-1) and transforming growth factor-β1(TGF-β1) gelatin microspheres on the function of MG63 cells were evaluated in vitro.The results show that porous titanium coated with gelatin sustained-release microspheres has no cytotoxicity.The IGF-1 and TGF-β1 loading concentrations are positively correlative with the proliferation and differentiation of MG63 after co-culturing with the concentrations of IGF-1 and TGF-β1 gelatin microspheres in the range of 0.1-10 ng/mg and 0.25-2.5 ng/mg,respectively.The MG63 cells exhibit the best proliferation and differentiation with the IGF-1 and TGF-β1 loading concentrations of 10 ng/mg and 2.5 ng/mg,respectively.The joint application of IGF-1 and TGF-β1 group,which promote adhesion,proliferation and differentiation of MG63 cells,is superior to a single application group.