期刊文献+
共找到819篇文章
< 1 2 41 >
每页显示 20 50 100
基于季节性(差分整合)自回归移动平均模型的广西乙类传染病发病情况预测 被引量:1
1
作者 韦雪梅 杨晓祥 +2 位作者 韦雪芹 李娟 袁宗祥 《内科》 2023年第3期209-214,共6页
目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月... 目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月报告发病数据作为测试集对模型进行测试。结果广西乙类传染病的发病情况呈季节性规律,最优预测模型为SARIMA(3,1,3)(2,0,0)_(12),其预测效果平均相对误差为7.99%,预测发病例数95%CI均包含了实际发病例数。结论SARIMA(3,1,3)(2,0,0)_(12)模型能较好地拟合广西乙类传染病的发病情况,可用于疫情的短期监测。 展开更多
关键词 广西壮族自治区 乙类传染病 季节性(差分整合)自回归移动平均模型 疾病预测
下载PDF
借助自回归移动平均模型构建儿童口服退烧药消耗量的预测模型
2
作者 王卓芸 于飚 +1 位作者 陶亮亮 蔡和平 《中南药学》 CAS 2024年第4期1097-1100,共4页
目的 使用自回归移动平均(ARIMA)模型对医院口服退烧药消耗量进行预测,旨在为医院药品供应提供参考。方法 收集某儿童医院2013年1月—2018年12月全院每月口服退烧药的消耗量建立ARIMA模型,预测2019年1—12月口服退烧药的消耗量,以2019年... 目的 使用自回归移动平均(ARIMA)模型对医院口服退烧药消耗量进行预测,旨在为医院药品供应提供参考。方法 收集某儿童医院2013年1月—2018年12月全院每月口服退烧药的消耗量建立ARIMA模型,预测2019年1—12月口服退烧药的消耗量,以2019年1—12月实际消耗量数据评价预测模型是否合适。结果 2013年1月—2018年12月每月口服退烧药消耗量的时间序列呈现明显的季节性,在每年1月、5—7月及12月出现消耗量峰值。该时间序列经季节性分解后拟合ARIMA(1,1,1)(1,1,1)_(12)模型,拟合效果较好,经过对比发现除2019年1月和2019年12月两个月外,其余月份预测值与实际值的相对误差均在20%以内。结论 依照2013年1月—2018年12月全院每月口服退烧药消耗量建立的ARIMA模型能够较好地预测口服退烧药消耗量,可为医院科学的药品供应提供一定参考。 展开更多
关键词 自回归移动平均模型 口服退烧药消耗量 药品供应
原文传递
自回归移动平均模型在骨科Ⅰ类切口感染预测中的应用 被引量:1
3
作者 陈丽 杨玉妹 方朕 《军事护理》 CSCD 北大核心 2023年第11期36-39,44,共5页
目的应用自回归移动平均(autoregressive integrated moving average,ARIMA)模型建立骨科Ⅰ类切口感染预测模型,预测未来6个月的感染发病率。方法回顾性分析2013年1月至2021年12月上海交通大学医学院附属第六人民医院骨科Ⅰ类切口感染... 目的应用自回归移动平均(autoregressive integrated moving average,ARIMA)模型建立骨科Ⅰ类切口感染预测模型,预测未来6个月的感染发病率。方法回顾性分析2013年1月至2021年12月上海交通大学医学院附属第六人民医院骨科Ⅰ类切口感染发病率数据。选取2013年1月至2021年6月的数据作为训练集,建立ARIMA模型;以2021年7-12月的发病率数据作为验证集,评价模型的预测效果,并预测未来6个月的发病率。结果2013年1月至2021年12月骨科Ⅰ类切口手术患者共有228647例,发生Ⅰ类切口感染628例,手术切口感染发病率为0.275%。ARIMA(1,0,0)(1,0,0)12为确定的最佳模型,2021年7-12月的实际值均落在预测值的95%可信区间范围内。采用该模型预测未来6个月的感染发病率依次分别为0.276%、0.283%、0.288%、0.285%、0.297%和0.291%。结论ARIMA模型能有效拟合、预测骨科Ⅰ类切口感染发病率,模型预测结果提示未来6个月内的发病率呈现低水平流行的态势,可为临床干预措施的实施提供科学依据。 展开更多
关键词 骨科 Ⅰ类切口 自回归移动平均模型 预测 感染
下载PDF
基于季节性差分整合移动平均自回归模型的城市公交短期客流预测 被引量:3
4
作者 李炜聪 潘福全 +3 位作者 胡盼 张丽霞 杨晓霞 杨金顺 《济南大学学报(自然科学版)》 CAS 北大核心 2022年第3期308-314,共7页
为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本... 为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本,对非平稳的客流时间序列进行1阶7步差分处理,对差分后的数据进行平稳性检验;通过相对信息量计算,确定预测模型中未知参数,对差分处理后的时间序列进行标准化残差检验,检验结果为白噪声序列,得到周期为7的季节性差分整合移动平均自回归预测模型;利用预测模型对2019年7—12月公交客流量进行预测与误差分析。结果表明,模型预测的平均相对误差为4.02%,最大相对误差为8.36%,模型预测精度较高,适用于青岛市公交短期客流量预测。 展开更多
关键词 交通预测 短期客流预测 季节差分整合移动平均自回归模型 城市公交 平稳性检验
原文传递
自回归求和移动平均乘积季节模型在西安地区出生缺陷预测中的应用 被引量:11
5
作者 张丽 米白冰 +7 位作者 相晓妹 宋辉 董敏 张水平 章琦 王玲玲 屈鹏飞 党少农 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2017年第3期371-374,426,共5页
目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟... 目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟合数据进行比较,评价模型的预测性能,并预测西安市2016年的出生缺陷发生率。结果西安市出生缺陷的发生率具有一定的趋势及季节性,建立了ARIMA(0,0,1)(0,1,1)12乘积季节模型,利用2015年9月至12月拟合值与实际出生缺陷发生率比较,绝对误差的平均9.5,相对误差的平均0.084,提示ARIMA(0,0,1)(0,1,1)12乘积季节模型具有较佳的预测能力。预测2016年西安市出生缺陷发生率与2015年接近,总体略有抬升,但峰值下降。结论 ARIMA(0,0,1)(0,1,1)12乘积季节模型可用于西安市出生缺陷发生率的预测。 展开更多
关键词 出生缺陷 自回归求和移动平均乘积季节模型 预测
下载PDF
基于小波变换与差分自回归移动平均模型的微博话题热度预测 被引量:13
6
作者 陈羽中 方明月 +1 位作者 郭文忠 郭昆 《模式识别与人工智能》 EI CSCD 北大核心 2015年第7期586-594,共9页
研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热... 研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热度.最后,提出基于小波变换与差分自回归移动平均模型的微博话题热度预测方法,以此预测话题热度(能量值)及话题能量峰值.实验表明,文中方法可有效预测话题热度及峰值,具有较低的残差和遗漏率. 展开更多
关键词 话题热度预测 用户影响力 老化理论 小波变换 差分自回归移动平均模型(ARIMA)
下载PDF
改进的差分自回归移动平均模型的共轭梯度参数估计法 被引量:6
7
作者 单锐 刘雅宁 刘文 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期85-90,9,共6页
为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局... 为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局收敛性进行了证明。该方法保证了迭代计算的收敛性,并且提高了收敛的速度。数值试验结果说明:该算法是一种较为有效的方法,与其他方法比较,参数估计值更为显著,提高了预测精度。 展开更多
关键词 差分自回归移动平均模型(ARIMA模型) 自回归滑动平均模型(ARMA模型) 参数估计 无约束问题 共轭梯度法 WOLFE搜索
下载PDF
基于季节自回归单整移动平均模型的电梯交通流递归预测方法 被引量:4
8
作者 宗群 赵占山 商安娜 《天津大学学报》 EI CAS CSCD 北大核心 2008年第6期653-659,共7页
针对电梯交通流预测提出了一种基于季节自回归单整移动平均(SARIMA)模型的递归预测方法.通过离线分析,对电梯交通流利用时间序列分析得到初始的SARIMA模型,引入异常值检测对训练数据中的异常值进行修正,利用修正的序列得到电梯交通流SAR... 针对电梯交通流预测提出了一种基于季节自回归单整移动平均(SARIMA)模型的递归预测方法.通过离线分析,对电梯交通流利用时间序列分析得到初始的SARIMA模型,引入异常值检测对训练数据中的异常值进行修正,利用修正的序列得到电梯交通流SARIMA模型;在线预测时,将离线得到修正的SARIMA模型转化为状态空间形式,通过Kalman滤波实时调整状态向量,实现电梯交通流的实时在线预测.仿真表明该方法具有很好的预测性能,且运行时间短,满足实时性的要求. 展开更多
关键词 电梯交通流预测 季节自回归单整移动平均模型 异常值检测 KALMAN滤波 状态空间模型
下载PDF
长沙市流行性腮腺炎季节性自回归移动平均模型预测研究 被引量:3
9
作者 刘琳玲 刘如春 +5 位作者 陈田木 张本忠 李亚曼 胡伟红 谢知 赵锦 《中国全科医学》 CAS 北大核心 2017年第2期187-190,共4页
目的采用季节性自回归移动平均(SARIMA)模型预测长沙市流行性腮腺炎发病数。方法收集2005—2015年长沙市报告的流行性腮腺炎病例数据,将2005—2014年数据作为建模数据,将2015年数据作为验证数据,开展SARIMA模型建立与验证研究,并对2016... 目的采用季节性自回归移动平均(SARIMA)模型预测长沙市流行性腮腺炎发病数。方法收集2005—2015年长沙市报告的流行性腮腺炎病例数据,将2005—2014年数据作为建模数据,将2015年数据作为验证数据,开展SARIMA模型建立与验证研究,并对2016年流行性腮腺炎发病数进行预测。结果 SARIMA(3,0,0)×(1,0,0)_(12)模型可以很好地拟合实际数据,模型的展开式为:Y_t=222.545+1.225Y_(t-1)-0.713Y_(t-2)+0.291Y_(t-3)+0.366Y_(t-12)-0.448Y_(t-13)+0.261Y_(t-14)-0.107Y_(t-15)+a_t。将验证数据与预测数据进行相关性分析,结果显示呈显著性相关(r=0.61,P<0.001)。SARIMA模型预测2016年长沙市全年发病数将达到3 032例,平均月病例数为253例。结论 SARIMA模型可以用于流行性腮腺炎发病数预测,长沙市2016年流行性腮腺炎疫情仍处于高发态势。 展开更多
关键词 流行性腮腺炎 时间序列 季节自回归移动平均模型 预测
下载PDF
差分整合移动平均自回归模型乘积季节模型在病毒性肝炎门诊量预测中的应用 被引量:1
10
作者 郭奇 边香 +4 位作者 杨菁 侯晓芳 郭柯宇 高永桂 饶华祥 《山西医药杂志》 CAS 2021年第3期347-349,共3页
目的分析某三级综合医院病毒性肝炎门诊量的变化并建立合适的模型,预测其就诊量变化趋势,为医院决策提供依据。方法运用Excel 2019软件建立数据库,SPSS 22.0软件对2005—2018年病毒性肝炎门诊量数据进行建模,2019年数据进行模型验证。... 目的分析某三级综合医院病毒性肝炎门诊量的变化并建立合适的模型,预测其就诊量变化趋势,为医院决策提供依据。方法运用Excel 2019软件建立数据库,SPSS 22.0软件对2005—2018年病毒性肝炎门诊量数据进行建模,2019年数据进行模型验证。结果病毒性肝炎门诊量整体呈下降趋势,但2017年后有回升趋势。采用传统建模方法和专家建模器拟合最优模型均为差分整合移动平均自回归模型(ARIMA)(0,1,1)(1,0,1)12。模型残差检验显示,残差均为白噪声序列,经典建模和专家建模器所建模型各项指标相似,平稳的R~2均为0.336,标准化的BIC值分别为6.126、6.089。2019年预测数据显示短期预测效果较好,而长期预测效果不理想。结论采用专家建模器构建的乘积季节模型在病毒性肝炎门诊量短期预测中预测效果较好,该方法客观、高效、简单,可用于门诊量短期预测。 展开更多
关键词 差分整合移动平均自回归模型 门诊医疗 预测 肝炎 病毒性
下载PDF
差分自回归移动平均模型在南通市手足口病疫情预测中的应用 被引量:3
11
作者 练维 魏叶 +1 位作者 韩颖颖 帅小博 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期59-64,共6页
目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发... 目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发病率为验证数据进行验证,检验模型的预测效果。结果:2010—2019年南通市共报告手足口病90 766例,年平均发病率为124.36/10万,疫情有明显季节性,呈双峰特征,为夏季(5、6、7月)高峰和冬季(11、12月)次高峰;近年来南通市手足口病的病原谱以其他肠道病毒为主;利用ARIMA(1,0,1)(1,1,1)12模型,预测2019年7—12月手足口病发病率分别为7.08/10万、1.81/10万、3.74/10万、7.21/10万、10.71/10万和11.29/10万,与实际发病率相比,两者差异无统计学意义(Z=0.48,P=0.63)。结论:差分自回归移动平均模型能较好地预测手足口病的发病趋势,可用于短期的预警监测。 展开更多
关键词 差分自回归移动平均模型 手足口病 预测
原文传递
应用自回归移动平均模型乘积季节模型预测兰州市水相关疾病发病情况 被引量:1
12
作者 李盛 王宇红 +11 位作者 王金玉 冯亚莉 李普 董继元 马汉平 王龄庆 常旭红 李守禹 张薇 张晓宇 贾清 张艳 《环境卫生学杂志》 2019年第2期134-138,共5页
目的探讨自回归移动平均模型(autoregressive integrated moving average model,ARIMA)乘积季节模型在水相关疾病发病率发病趋势预测中的应用,对兰州市水相关疾病发病情况进行预测。方法收集2006年1月—2014年12月水相关疾病发病率数据... 目的探讨自回归移动平均模型(autoregressive integrated moving average model,ARIMA)乘积季节模型在水相关疾病发病率发病趋势预测中的应用,对兰州市水相关疾病发病情况进行预测。方法收集2006年1月—2014年12月水相关疾病发病率数据,利用R软件构建ARIMA乘积季节模型,利用2015—2017年实际发病率与模型拟合数据比较,评价模型的预测性能,并预测2015—2017年水相关疾病的发病率。结果在水相关疾病预测中建立ARIMA(2,0,1)×(2,0,0)_(12)乘积季节模型,Ljung-Box检验差异无统计学意义(Q=18.64,P=0.824),2015年—2017年兰州市常见水相关疾病实际发病率均在预测结果95%可信区间内,平均预测相对误差为5%。结论 ARIMA乘积季节模型可以较好的预测兰州市水相关疾病发病率的变化趋势,能够运用于水相关疾病发病趋势的预测及预警,为防控措施的制定提供参考。 展开更多
关键词 时间序列 水相关疾病 自回归移动平均模型
下载PDF
基于数据挖掘及自回归积分移动平均模型预测的医用耗材库存智能化管理研究 被引量:1
13
作者 徐嘉彬 傅歆 +1 位作者 刘林 高述桥 《中国医学装备》 2023年第11期143-146,共4页
目的:基于自回归积分移动平均(ARIMA)构建医用耗材ARIMA模型,为医用耗材库存管理中的各项决策提供技术支持。方法:采用数据挖掘技术中的时间序列分析方法对医用耗材库存进行预测,通过构建医用耗材ARIMA模型分析医用耗材库存变化趋势,预... 目的:基于自回归积分移动平均(ARIMA)构建医用耗材ARIMA模型,为医用耗材库存管理中的各项决策提供技术支持。方法:采用数据挖掘技术中的时间序列分析方法对医用耗材库存进行预测,通过构建医用耗材ARIMA模型分析医用耗材库存变化趋势,预测未来一段时间内医用耗材库存可能出现的结果。选取2018-2021年医院医用耗材每月库存数据,根据2018年1月至2021年7月医院医用耗材每月的库存数据构建医用耗材ARIMA模型,对2021年8-12月的医用耗材每月库存数据进行模型验证和数据预测。结果:建立的医用耗材最优模型为ARIMA(5,1,2)(1,1,1),模型平均绝对误差为7.46%;采用该模型预测2021年8-12月的医用耗材库存量与实际医用耗材库存量比较接近,平均绝对百分比误差(MAPE)为2.075%,模型拟合效果较好。结论:基于数据挖掘技术构建的医用耗材ARIMA模型,可指导决策者根据预测值对医用耗材进行采购,一定程度上降低医用耗材积压率和断货率,减少客观因素引起的医用耗材损耗率。 展开更多
关键词 数据挖掘 自回归积分移动平均(ARIMA)模型 医用耗材库 智能化管理
下载PDF
差分自回归移动平均与广义回归神经网络组合模型在丙型肝炎月发病率中的预测应用 被引量:6
14
作者 刘红杨 刘洪庆 +1 位作者 李望晨 赵晶 《中国全科医学》 CAS 北大核心 2017年第2期182-186,共5页
目的探讨差分自回归移动平均(ARIMA)与广义回归神经网络(GRNN)组合模型在丙型肝炎月发病率中预测建模效果及应用前景,为疫情预测提供依据。方法 2015年5月—2016年5月,选取山东省疾病预防控制中心法定传染病直报系统2004—2014年丙型肝... 目的探讨差分自回归移动平均(ARIMA)与广义回归神经网络(GRNN)组合模型在丙型肝炎月发病率中预测建模效果及应用前景,为疫情预测提供依据。方法 2015年5月—2016年5月,选取山东省疾病预防控制中心法定传染病直报系统2004—2014年丙型肝炎月度发病率数据及山东省统计局发布的同期人口资料。对2004—2014年山东省丙型肝炎月发病率数据构建ARIMA模型,验证拟合精度并外推预测;将ARIMA模型拟合值作为GRNN模型的输入,实际值作为GRNN模型的输出,对样本进行训练和预测。比较单纯ARIMA模型和ARIMA-GRNN组合模型在丙型肝炎月发病率中的预测效果。结果 2004—2014年山东省丙型肝炎年均发病率为17.28/10万,并随着时间的推移呈上升趋势(Z=29.05,P<0.01)。ARIMA(1,2,1)模型预测2014年山东省丙型肝炎发病率与实际发病率基本一致,落在95%置信区间内,拟合效果较好。以ARIMA(1,2,1)模型拟合值作为GRNN模型的输入,丙型肝炎月发病率实际值作为GRNN模型的输出,取最优光滑因子0.12训练模型,ARIMA-GRNN组合模型预测的拟合值与实际值基本吻合。ARIMA模型和ARIMA-GRNN组合模型的平均误差率(MER)分别为16.87%、15.30%;决定系数(R^2)分别为0.53、0.60;平均绝对误差(MAE)分别为0.17、0.09;平均绝对百分误差(MAPE)分别为1.18、0.35。结论 ARIMA-GRNN组合模型对山东省丙型肝炎月发病率拟合及预测效果优于单纯ARIMA模型,具有较高的拟合精度,有较为广阔的应用前景,对于疫情预测工作有一定的实用性意义。 展开更多
关键词 丙型肝炎 发病率 预测 差分自回归移动平均模型 广义回归神经网络
下载PDF
浙江省月度电力需求的变分模态分解-自适应模糊神经网络-差分整合移动平均自回归组合预测模型及应用 被引量:5
15
作者 董知周 黄建平 +6 位作者 许晓敏 李铮 纪正森 高恬 吴庚奇 夏洪涛 陈浩 《科学技术与工程》 北大核心 2021年第12期4957-4967,共11页
为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过... 为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过VMD分解成有限带宽的子模态序列,选用差分整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)、ANFIS、经验模态分解(empirical mode decomposition,EMD)与ANFIS相结合和VMD-ANFIS几种模型进行预测结果对比。结果表明:相比直接利用ANFIS模型得到的预测结果,增加VMD分解过程能有效减小预测误差。说明所应用的VMD-ANFIS方法更具优越性,可以获得更好的预测结果。 展开更多
关键词 电力需求预测 差分整合移动平均自回归模型(ARIMA) 变分模态分解 自适应模糊神经网络
下载PDF
基于改进自回归差分移动平均模型的网络流量预测 被引量:6
16
作者 汪尧 黄宁 +1 位作者 武润升 王军良 《通信技术》 2021年第12期2626-2631,共6页
为了缓解通信网络的拥塞问题,减少用户请求服务的等待时间,提高网络的利用率,网络运营服务商需要对网络实时流量进行分析,而建立准确高效的流量分析模型能提供更加准确的数据支持。基于此,提出了改进的自回归差分移动平均模型,该方法与... 为了缓解通信网络的拥塞问题,减少用户请求服务的等待时间,提高网络的利用率,网络运营服务商需要对网络实时流量进行分析,而建立准确高效的流量分析模型能提供更加准确的数据支持。基于此,提出了改进的自回归差分移动平均模型,该方法与传统模型方法相比,引入了误差扩散因子这一新的参数,并使用改良的粒子群算法得到欲求解的参数值。通过对测试集中的流量数据进行验证分析,可以得到,改进后的模型相比改进前,预测精度和稳定性均得到了提升。 展开更多
关键词 网络流量 流量预测 自回归差分移动平均模型 改良粒子群算法
下载PDF
乘积季节自回归积分滑动平均模型在长沙市手足口病发病率预测中的应用 被引量:10
17
作者 谈婷 陈立章 刘富强 《中南大学学报(医学版)》 CAS CSCD 北大核心 2014年第11期1170-1176,共7页
目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月... 目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月的手足口病发病率资料建立乘积季节ARIMA模型,以2013年9月至2014年2月的发病资料作为模型预测效果的检验样本,最后再用所得到的模型对2014年3月至2014年8月的月发病率进行预测。结果:经过序列平稳化、模型识别以及模型诊断后,建立乘积季节ARIMA模型(1,0,1)×(0,1,1)12,模型拟合度R2=0.81,预测均方根误差为8.29,平均绝对误差为5.83。结论:乘积季节ARIMA模型是一种较好的预测模型,所建模型拟合度较好,能为手足口病的防治工作提供参考。 展开更多
关键词 手足口病 时间序列 乘积季节自回归积分滑动平均模型
下载PDF
时间序列自回归移动平均模型在临床红细胞用量预测中的应用 被引量:16
18
作者 叶柱江 刘赴平 《中国输血杂志》 CAS CSCD 北大核心 2013年第2期131-134,共4页
目的验证自回归移动平均模型(ARIMA)预测临床红细胞用量的可行性,并为血站制定备血计划提供数据支持。方法选择东莞市2006年1月~2011年12月6年的每月临床红细胞用量作为时间序列模型的数据源。利用SPSS软件进行时间序列模型的构建,通过... 目的验证自回归移动平均模型(ARIMA)预测临床红细胞用量的可行性,并为血站制定备血计划提供数据支持。方法选择东莞市2006年1月~2011年12月6年的每月临床红细胞用量作为时间序列模型的数据源。利用SPSS软件进行时间序列模型的构建,通过对2012年的前5个月临床红细胞实际用量进行模型检验。并据此对模型预测临床红细胞用量分析的可行性、建模步骤及准确性验证进行了探讨。结果 ARIMA模型计算出的预测值与实际值拟合较好,相对误差较小。1月份相对误差为-6.32%,2月份为13.28%,3月份为7.78%,4月份为3.73%,5月份为3.78%,平均相对误差为4.45%。结论可以应用时间序列自回归移动平均模型对未来的临床红细胞用量进行预测,为血站制定备血计划提供可靠的参考依据。 展开更多
关键词 时间序列 自回归移动平均模型(ARIMA) 预测 红细胞用量
原文传递
自回归移动平均模型在医疗服务需求预测中的应用 被引量:9
19
作者 张柠 苏学艳 李力 《中国医院管理》 2011年第10期6-8,共3页
目的拟合医疗服务需求时间序列资料的预测模型。方法采用自回归移动平均模型对出院人次进行模型拟合。结果模型拟合得到的最优模型为一阶自回归移动平均模型,模型预测2020年某市三甲医院的出院总人次将为93.88万人次。结论自回归移动平... 目的拟合医疗服务需求时间序列资料的预测模型。方法采用自回归移动平均模型对出院人次进行模型拟合。结果模型拟合得到的最优模型为一阶自回归移动平均模型,模型预测2020年某市三甲医院的出院总人次将为93.88万人次。结论自回归移动平均模型适用于出院总人次时间序列模型拟合,预测结果显示,在没有外来干预因素影响的情况下,三甲医院出院总人次将会延续2009年以前的上升趋势继续上涨。 展开更多
关键词 自回归移动平均模型 医疗服务需求 时间序列分析
下载PDF
自回归求和移动平均模型在湖南省食物中毒预测中的应用 被引量:7
20
作者 陈玲 徐慧兰 《中南大学学报(医学版)》 CAS CSCD 北大核心 2012年第2期142-146,共5页
目的:探索自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)在湖南省食物中毒预测中的应用,为食物中毒的预防和控制提供依据。方法:收集2003年1月至2009年12月湖南省食物中毒人数进行ARIMA模型拟合,用2010年的... 目的:探索自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)在湖南省食物中毒预测中的应用,为食物中毒的预防和控制提供依据。方法:收集2003年1月至2009年12月湖南省食物中毒人数进行ARIMA模型拟合,用2010年的中毒资料验证模型的预测效果,并预测2011年湖南省食物中毒人数。结果:ARIMA(0,1,1)(0,1,1)12较好地拟合了既往时间段中毒人数的时间序列,拟合预测误差为9.59%,2011年湖南省食物中毒预测人数为834人。结论:ARIMA预测模型能较好地拟合短期内食物中毒人数在时间序列上的变化趋势,若用于长期预测,应根据长期监测数据不断调整模型参数。 展开更多
关键词 自回归求和移动平均模型 食物中毒 预测
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部