期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络和深度特征融合的学习表情识别 被引量:1
1
作者 范凌云 《科学技术创新》 2022年第11期85-88,共4页
针对单一特征难以精确区分局部区域重合的学习表情等问题,提出了一种基于卷积神经网络的深度特征提取及融合方法,首先提取灰度特征和LBP纹理,其次利用Alexnet卷积神经网络提取深度特征,并将深度特征通过向量拼接进行特征融合,然后对融... 针对单一特征难以精确区分局部区域重合的学习表情等问题,提出了一种基于卷积神经网络的深度特征提取及融合方法,首先提取灰度特征和LBP纹理,其次利用Alexnet卷积神经网络提取深度特征,并将深度特征通过向量拼接进行特征融合,然后对融合特征进行PCA降维处理。通过SVM分类器在CK+数据集上进行学习表情识别实验,实验结果表明,深度融合特征显著提高了识别效率,具有更好的特征鲁棒性。 展开更多
关键词 卷积神经网络 特征融合 学习表情识别
下载PDF
面向深度学习的学习表情数据库的设计与实现 被引量:2
2
作者 徐振国 刘志 +1 位作者 孔玺 党同桐 《现代教育技术》 CSSCI 2021年第8期112-118,共7页
学习表情数据库中学习表情图像的数量与质量将直接决定深度学习模型的效率和泛化能力,但既有表情数据库存在样本数量少、分辨率低、表情类型有限等问题,而且其建设初衷也并非出于教育教学研究的需要,这无疑限制了学习表情的识别与应用... 学习表情数据库中学习表情图像的数量与质量将直接决定深度学习模型的效率和泛化能力,但既有表情数据库存在样本数量少、分辨率低、表情类型有限等问题,而且其建设初衷也并非出于教育教学研究的需要,这无疑限制了学习表情的识别与应用。文章从现实需求出发,建成了拥有168000幅图像的学习表情数据库,并采用主观评价法对该数据库进行了评价,以确保该数据库的实用性和有效性。评价结果显示,学习表情数据库具有较高质量,能够满足实际需要。学习表情数据库的建设,对于提高学习表情识别的效率、准确率和鲁棒性具有重要意义,并有助于实现学习者与学习环境之间的深层情感交互。 展开更多
关键词 深度学习 学习表情 表情识别 学习情感 表情数据库
下载PDF
基于深度学习的学习表情数据库设计和实现
3
作者 陈亚峰 《电子技术(上海)》 2024年第7期92-93,共2页
阐述表情数据库研究现状,介绍学习表情的采集方案,并对学习表情进行采集、编码和评价。评价结果表明,该学习表情数据库不仅可以提高学习表情识别效率,还可以建立起深层情感交互。
关键词 深度学习 学习表情 表情数据库
原文传递
基于深度学习的学生学习情感模型建立与分析
4
作者 周江 李锋 蔡臻 《信息与电脑》 2023年第2期104-107,共4页
传统的情感模型仅仅关注学生学习表情与对应的学习情感之间的关系,而忽略了不同学习情感之间的关系,因而导致学生学习表情识别准确率相对较低。基于此,建立学生学习表情三维状态空间情感模型,并在其中引入Maxout神经元,从而构建优化的... 传统的情感模型仅仅关注学生学习表情与对应的学习情感之间的关系,而忽略了不同学习情感之间的关系,因而导致学生学习表情识别准确率相对较低。基于此,建立学生学习表情三维状态空间情感模型,并在其中引入Maxout神经元,从而构建优化的三维状态空间情感模型,进一步解决三维梯度弥散问题,更好地优化系统的训练过程,在本模型中还引入了情感分类器的概念,实现对学生学习表情情感状态的有效分类,从而进一步增强模型的泛化能力。另外,建立了愉悦、困惑、惊讶、中性和疲倦5种情感状态的模型,并依据所提出的模型进行了实际验证实验,实验结果表明所提出的优化后的三维状态空间情感模型相比于传统模型识别准确率提升了12.5个百分点。 展开更多
关键词 学生学习情感模型 三维状态空间情感模型 Maxout神经元 情感分类器 学生学习表情识别
下载PDF
Basic Study on Elderly Tele-nursing Model for Emote Nursing by Smart Device 被引量:1
5
作者 Hideaki Takayanagi Chieko Kawakatsu +4 位作者 Tatsuto Kihara Kazuhide Kawaguchi Hidetoshi Kawaguchi Takaaki Furukawa Yuka Kimura 《Journal of Civil Engineering and Architecture》 2018年第8期605-614,共10页
This study was carried out to examine the development of an “elderly tele-nursing model” for care provided in-home by family members and through remote nursing systems in a super-aging society. This model studied th... This study was carried out to examine the development of an “elderly tele-nursing model” for care provided in-home by family members and through remote nursing systems in a super-aging society. This model studied the travel time, cost, and means of transportation of care providers. The pre-survey results regarding elderly tele-nursing show that a son/daughter can visit a parent more than once a week. In the results, the time required for elderly tele-nursing was influenced by whether or not the visitor uses the shinkansen (bullet train of Japan). In the main survey, based on 40 questionnaires, clear differences were observed according to whether visits were “every two weeks” or “once per month”. Furthermore, this result was also indicated by t-tests. 展开更多
关键词 Senior citizen information systems smart device time distance elderly tele-nursing model.
下载PDF
Label distribution expression recognition algorithm based on asymptotic truth value
6
作者 HUANG Hao GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期295-303,共9页
Ambiguous expression is a common phenomenon in facial expression recognition(FER).Because of the existence of ambiguous expression,the effect of FER is severely limited.The reason maybe that the single label of the da... Ambiguous expression is a common phenomenon in facial expression recognition(FER).Because of the existence of ambiguous expression,the effect of FER is severely limited.The reason maybe that the single label of the data cannot effectively describe complex emotional intentions which are vital in FER.Label distribution learning contains more information and is a possible way to solve this problem.To apply label distribution learning on FER,a label distribution expression recognition algorithm based on asymptotic truth value is proposed.Under the premise of not incorporating extraneous quantitative information,the original information of database is fully used to complete the generation and utilization of label distribution.Firstly,in training part,single label learning is used to collect the mean value of the overall distribution of data.Then,the true value of data label is approached gradually on the granularity of data batch.Finally,the whole network model is retrained using the generated label distribution data.Experimental results show that this method can improve the accuracy of the network model obviously,and has certain competitiveness compared with the advanced algorithms. 展开更多
关键词 facial expression recognition(FER) label distributed learning label smoothing ambiguous expression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部