The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for ...The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for time series data of strata energy release,the saturated embedding dimension and the correlation dimension of the dynamic system were obtained to be 4 and 1.212 8,respectively,and the evolution laws of distances between phase points of strata energy release in the phase space were revealed.With grey theory,a prediction model of strata energy release was set up,the maximum error of which was less than 6.7%.The results show that there are chaotic characters in strata energy release during mining;after reconstructing phase space,the subtle changing characteristics of energy release can be magnified,and the internal rules can be fully demonstrated.According to the laws,a warning system for strata stability in mining area was established to provide a technical safeguard for safe mining.展开更多
To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consist...To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.展开更多
基金Project (2010CB732004) supported by the National Basic Research Program of ChinaProject (51074177) supported by the Joint Funding of National Natural Science Foundation and Shanghai Baosteel Group Corporation,China
文摘The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for time series data of strata energy release,the saturated embedding dimension and the correlation dimension of the dynamic system were obtained to be 4 and 1.212 8,respectively,and the evolution laws of distances between phase points of strata energy release in the phase space were revealed.With grey theory,a prediction model of strata energy release was set up,the maximum error of which was less than 6.7%.The results show that there are chaotic characters in strata energy release during mining;after reconstructing phase space,the subtle changing characteristics of energy release can be magnified,and the internal rules can be fully demonstrated.According to the laws,a warning system for strata stability in mining area was established to provide a technical safeguard for safe mining.
基金supported by the National Natural Science Foundation of China(Nos.51304128 and 51674158)the Natural Science Foundation of Shandong Province(No.ZR2013EEQ015)
文摘To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.