期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SE-Res2Net网络的宫颈癌超声肿瘤特征提取技术
1
作者 张海艳 李洁 +2 位作者 张博学 刘静 唐雪蕊 《信息技术》 2022年第5期177-182,共6页
为了有效提高宫颈癌的诊断准确率,提出一种基于SE-Res2Net网络的宫颈癌超声肿瘤特征提取技术。在YOLOv3算法模型的基础上,将SE模块嵌入Res2Net网络中,创建一种能够替换原特征提取网络的SE-Res2Net网络,使模型的特征提取能力得到提升。... 为了有效提高宫颈癌的诊断准确率,提出一种基于SE-Res2Net网络的宫颈癌超声肿瘤特征提取技术。在YOLOv3算法模型的基础上,将SE模块嵌入Res2Net网络中,创建一种能够替换原特征提取网络的SE-Res2Net网络,使模型的特征提取能力得到提升。利用重新构建的下采样模块,保证了下采样操作后信息的完整性。将密集连接网络与残差连接网络相结合,组建Res-DenseNet网络以改进YOLOv3模型的原有残差连接方式。实验结果表明,该方法的性能明显优于传统YOLOv3算法,适于在临床诊断中普及应用。 展开更多
关键词 SE-Res2Net网络 宫颈癌超声图像 采样 特征提取 识别性能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部