Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In...Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In this paper, we propose a video-based crowd density analysis and prediction system for wide-area surveillance applications. In monocular image sequences, the Accumulated Mosaic Image Difference (AMID) method is applied to extract crowd areas having irregular motion. The specific number of persons and velocity of a crowd can be adequately estimated by our system from the density of crowded areas. Using a multi-camera network, we can obtain predictions of a crowd's density several minutes in advance. The system has been used in real applications, and numerous experiments conducted in real scenes (station, park, plaza) demonstrate the effectiveness and robustness of the proposed method.展开更多
For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background mod...For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background model kept a sample of intensity values for each pixel in the image and used this sample to estimate the probability density function of the pixel intensity. The density function was estimated using a new Marr wavelet kernel density estimation technique. Since this approach was quite general, the model could approximate any distribution for the pixel intensity without any assumptions about the underlying distribution shape. The background and current frame were transformed in the binary discrete wavelet domain, and background subtraction was performed in each sub-band. After obtaining the foreground, shadow was eliminated by an edge detection method. Experimental results show that the proposed method produces good results with much lower computational complexity and effectively extracts the moving objects with accuracy ratio higher than 90%, indicating that the proposed method is an effective algorithm for intelligent transportation system.展开更多
Crowd density is an important factor of crowd stability.Previous crowd density estimation methods are highly dependent on the specific video scene.This paper presented a video scene invariant crowd density estimation ...Crowd density is an important factor of crowd stability.Previous crowd density estimation methods are highly dependent on the specific video scene.This paper presented a video scene invariant crowd density estimation method using Geographic Information Systems(GIS) to monitor crowd size for large areas.The proposed method mapped crowd images to GIS.Then we can estimate crowd density for each camera in GIS using an estimation model obtained by one camera.Test results show that one model obtained by one camera in GIS can be adaptively applied to other cameras in outdoor video scenes.A real-time monitoring system for crowd size in large areas based on scene invariant model has been successfully used in 'Jiangsu Qinhuai Lantern Festival,2012'.It can provide early warning information and scientific basis for safety and security decision making.展开更多
The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of op...The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of open quantum systems is important in excitation energy,charge,and quantum coherence transfer as well as reactive photochemistry.The system is usually chosen to be the interested degrees of freedom such as the electronicstates in light-harvesting molecules or tagged vibrational modes in a condensed-phase system.The environment is also called the bath,whose influence on the system has to be considered,and for instance can be described by the GQME formalisms using the projection operator technique.In this review,we provide a heuristic description of the development of two canonical forms of GQME,namely the time-convoluted Nakajima-Zwanzig form(NZ-GQME)and the time-convolutionless form(TCL-GQME).In the more popular NZ-GQME form,the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects,which gives formally exact dynamics of the reduced density matrix.We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information.In particular,the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts.The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods.We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today’s state-of-the-art classical supercomputers.展开更多
The probability distribution of wave heights under the assumption of narrowband linear wave theory follows the Rayleigh distribution and the statistical relationships between some characteristic wave heights, derived ...The probability distribution of wave heights under the assumption of narrowband linear wave theory follows the Rayleigh distribution and the statistical relationships between some characteristic wave heights, derived from this distribution, are widely used for the treatment of realistic wind waves. However, the bandwidth of wave frequency influences the probability distribution of wave heights. In this paper, a wave-spectrum-width parameter B was introduced into the JONSWAP spectrum. This facilitated the construction of a wind-wave spectrum and the reconstruction of wind-wave time series for various growth stages, based on which the probability density distributions of the wind-wave heights were studied statistically. The distribution curves deviated slightly from the theoretical Rayleigh distribution with increasing B. The probability that a wave height exceeded a certain value was clearly smaller than the theoretical value for B≥0.3, and the difference between them increased with the threshold value. The relation between the Hs/σ ratio and B was investigated statistically, which revealed that the Hs/σ ratio deviated from 4.005 and declined with B. When B reached 0.698 1, the Hs/σ ratio was 3.825, which is about 95.5% of its original value. This indicates an overestimation in the a potential method for improving the accuracy of the Hs extremely large waves under severe sea states. prediction of Hs from Hs=4.005σ, and provides remote sensing retrieval algorithm, critical for展开更多
The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We ...The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We divide a given difficult random K-SAT formula into two easy sub-formulas and let the two corresponding solution spaces to interact with each other through a coupling field x. We investigate the statistical mechanical property of this coupled system by mean field theory and computer simulations. The coupled system has an ergodicity-breaking (clustering) transition at certain critical value Xd of the coupling field. At this transition point, the mean overlap value between the solutions of the two solution spaces is very close to 1. The mean energy density of the coupled system at its clustering transition point is less than the mean energy density of the original K-SAT problem at the temperature-induced clustering transition point. The implications of this work for designing new heuristic K-SAT solvers are discussed.展开更多
The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces...The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces. In order to evaluate the degree of matching, the density of good matching site (GMS) between two lattices is calculated. The analysis shows that the GMS density remains approximately constant, irrespectively to the degree of lattice misfit. This constant, defined as the average GMS density, decreases exponentially with the increasing dimension of misfit. Typically, for 6 = 15%, the average GMS densities are approximately 30%, 7%, and 1.4% for 1D, 2D, and 3D lattice misfits, respectively. The GMS density deviates significantly if a CSL of small X can be defined. The relationship between the GMS distribution and O-lattice is investigated. It indicates that an abrupt increase in the GMS density in an interface parallel to a principal O-lattice plane is equivalent to a reduction of dimension of misfit. This shows the agreement between the selections of principal O-lattice planes as candidates of the preferred interfaces and the condition that interfaces with high GMS density are preferred.展开更多
The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the ...The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the graphene BLGs, either big or small, interferes with the formation of inter-layer C-C covalent bonds and this leads to strong resistance to hydrogenation. In addition, the electronic properties of stable, hydrogenated twisted BLG with different twist angles and degrees of H coverage were investigated. This study paves the way to the selective functionalization of BLG for various applications.展开更多
Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtiss...Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtissue in an arrayed organization.The method illustrates a new macroencapsulation paradigm that may allow transplantation of a large number of cells with microscale spatial control,while maintaining an encapsulation device that is easily maneuverable and remaining integrated following transplantation.This study aims to investigate the design principles that relate to the translational application of micropatterned encapsulation membranes,namely,the control over the transplantation density/quantity of arrayed microtissues and the fidelity of pre-formed microtissues to micropatterns.Agarose hydrogel membranes with microwell patterns were used as a model encapsulation system to exemplify these principles.Our results show that high-density micropatterns can be generated in hydrogel membranes,which can potentially maximize the percentage volume of cellular content and thereby the transplantation efficiency of the encapsulation device.Direct seeding of microtissues demonstrates that microwell structures can efficiently position and organize pre-formed microtissues,suggesting the capability of micropatterned devices for manipulation of cellular transplants at multicellular or tissue levels.Detailed theoretical analysis was performed to provide insights into the relationship between micropatterns and the transplantation capacity of membrane-based encapsulation.Our study lays the ground for developing new macroencapsulation systems with microscale cellular/tissue patterns for regenerative transplantation.展开更多
Two types of Mg-Cu composition system graded density impactors used for complex loading (shock loading and quasi-isentropic compression) are designed by the elastic-plastic hydrodynamic method in this paper. Mixture...Two types of Mg-Cu composition system graded density impactors used for complex loading (shock loading and quasi-isentropic compression) are designed by the elastic-plastic hydrodynamic method in this paper. Mixtures of metal powders in the Mg-Cu system are cast into a series of 17 and 25 uniform compositions ranging from 100% Mg to 100% Cu. The graded den- sity impactors are launched to the stationary 10 Ixm aluminum film and 12 mm LiF window targets by a two-stage light-gas gun in the National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, and the resulting wave profiles are measured with the DISAR system. Hydrodynamic simulation results are perfectly consistent with the experiments. Our work in this paper will set up a foundation for further research of controllable loading/releasing routes and rate experiments in the future.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 61175007the National Key Technologies R&D Program under Grant No. 2012BAH07B01the National Key Basic Research Program of China (973 Program) under Grant No. 2012CB316302
文摘Crowd density estimation in wide areas is a challenging problem for visual surveillance. Because of the high risk of degeneration, the safety of public events involving large crowds has always been a major concern. In this paper, we propose a video-based crowd density analysis and prediction system for wide-area surveillance applications. In monocular image sequences, the Accumulated Mosaic Image Difference (AMID) method is applied to extract crowd areas having irregular motion. The specific number of persons and velocity of a crowd can be adequately estimated by our system from the density of crowded areas. Using a multi-camera network, we can obtain predictions of a crowd's density several minutes in advance. The system has been used in real applications, and numerous experiments conducted in real scenes (station, park, plaza) demonstrate the effectiveness and robustness of the proposed method.
基金Project(60772080) supported by the National Natural Science Foundation of ChinaProject(3240120) supported by Tianjin Subway Safety System, Honeywell Limited, China
文摘For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background model kept a sample of intensity values for each pixel in the image and used this sample to estimate the probability density function of the pixel intensity. The density function was estimated using a new Marr wavelet kernel density estimation technique. Since this approach was quite general, the model could approximate any distribution for the pixel intensity without any assumptions about the underlying distribution shape. The background and current frame were transformed in the binary discrete wavelet domain, and background subtraction was performed in each sub-band. After obtaining the foreground, shadow was eliminated by an edge detection method. Experimental results show that the proposed method produces good results with much lower computational complexity and effectively extracts the moving objects with accuracy ratio higher than 90%, indicating that the proposed method is an effective algorithm for intelligent transportation system.
基金The authors would like to thank the reviewers for their detailed reviews and constructive comments. We are also grateful for Sophie Song's help on the improving English. This work was supported in part by the ‘Fivetwelfh' National Science and Technology Support Program of the Ministry of Science and Technology of China (No. 2012BAH35B02), the National Natural Science Foundation of China (NSFC) (No. 41401107, No. 41201402, and No. 41201417).
文摘Crowd density is an important factor of crowd stability.Previous crowd density estimation methods are highly dependent on the specific video scene.This paper presented a video scene invariant crowd density estimation method using Geographic Information Systems(GIS) to monitor crowd size for large areas.The proposed method mapped crowd images to GIS.Then we can estimate crowd density for each camera in GIS using an estimation model obtained by one camera.Test results show that one model obtained by one camera in GIS can be adaptively applied to other cameras in outdoor video scenes.A real-time monitoring system for crowd size in large areas based on scene invariant model has been successfully used in 'Jiangsu Qinhuai Lantern Festival,2012'.It can provide early warning information and scientific basis for safety and security decision making.
基金support from NYU Shanghai,the National Natural Science Foundation of China(No.21903054)the Hefei National Laboratory for Physical Sciences at the Microscale(No.KF2020008)+1 种基金the Shanghai Sailing Program(No.19YF1435600)the Program for Eastern Young Scholar at Shanghai Institutions of Higher Learning。
文摘The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of open quantum systems is important in excitation energy,charge,and quantum coherence transfer as well as reactive photochemistry.The system is usually chosen to be the interested degrees of freedom such as the electronicstates in light-harvesting molecules or tagged vibrational modes in a condensed-phase system.The environment is also called the bath,whose influence on the system has to be considered,and for instance can be described by the GQME formalisms using the projection operator technique.In this review,we provide a heuristic description of the development of two canonical forms of GQME,namely the time-convoluted Nakajima-Zwanzig form(NZ-GQME)and the time-convolutionless form(TCL-GQME).In the more popular NZ-GQME form,the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects,which gives formally exact dynamics of the reduced density matrix.We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information.In particular,the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts.The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods.We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today’s state-of-the-art classical supercomputers.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.U1133001,41376027,41406017)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘The probability distribution of wave heights under the assumption of narrowband linear wave theory follows the Rayleigh distribution and the statistical relationships between some characteristic wave heights, derived from this distribution, are widely used for the treatment of realistic wind waves. However, the bandwidth of wave frequency influences the probability distribution of wave heights. In this paper, a wave-spectrum-width parameter B was introduced into the JONSWAP spectrum. This facilitated the construction of a wind-wave spectrum and the reconstruction of wind-wave time series for various growth stages, based on which the probability density distributions of the wind-wave heights were studied statistically. The distribution curves deviated slightly from the theoretical Rayleigh distribution with increasing B. The probability that a wave height exceeded a certain value was clearly smaller than the theoretical value for B≥0.3, and the difference between them increased with the threshold value. The relation between the Hs/σ ratio and B was investigated statistically, which revealed that the Hs/σ ratio deviated from 4.005 and declined with B. When B reached 0.698 1, the Hs/σ ratio was 3.825, which is about 95.5% of its original value. This indicates an overestimation in the a potential method for improving the accuracy of the Hs extremely large waves under severe sea states. prediction of Hs from Hs=4.005σ, and provides remote sensing retrieval algorithm, critical for
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences under Grant No.KJCX2-EW-J02the Natural National Science Foundation of China under Grant Nos.11121403 and 11225526
文摘The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We divide a given difficult random K-SAT formula into two easy sub-formulas and let the two corresponding solution spaces to interact with each other through a coupling field x. We investigate the statistical mechanical property of this coupled system by mean field theory and computer simulations. The coupled system has an ergodicity-breaking (clustering) transition at certain critical value Xd of the coupling field. At this transition point, the mean overlap value between the solutions of the two solution spaces is very close to 1. The mean energy density of the coupled system at its clustering transition point is less than the mean energy density of the original K-SAT problem at the temperature-induced clustering transition point. The implications of this work for designing new heuristic K-SAT solvers are discussed.
基金supported from the National Natural Science Foundation of China (Grant No. 1171088)the National Basic Research Program of China (Grant No. 12CB619403) from Chinese Ministry of Science and Technology
文摘The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces. In order to evaluate the degree of matching, the density of good matching site (GMS) between two lattices is calculated. The analysis shows that the GMS density remains approximately constant, irrespectively to the degree of lattice misfit. This constant, defined as the average GMS density, decreases exponentially with the increasing dimension of misfit. Typically, for 6 = 15%, the average GMS densities are approximately 30%, 7%, and 1.4% for 1D, 2D, and 3D lattice misfits, respectively. The GMS density deviates significantly if a CSL of small X can be defined. The relationship between the GMS distribution and O-lattice is investigated. It indicates that an abrupt increase in the GMS density in an interface parallel to a principal O-lattice plane is equivalent to a reduction of dimension of misfit. This shows the agreement between the selections of principal O-lattice planes as candidates of the preferred interfaces and the condition that interfaces with high GMS density are preferred.
文摘The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the graphene BLGs, either big or small, interferes with the formation of inter-layer C-C covalent bonds and this leads to strong resistance to hydrogenation. In addition, the electronic properties of stable, hydrogenated twisted BLG with different twist angles and degrees of H coverage were investigated. This study paves the way to the selective functionalization of BLG for various applications.
基金supported by the Key New Drug Creation and Manufacturing Program(2011ZX09102-010-03)the National Natural Science Foundation of China(31170933)
文摘Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtissue in an arrayed organization.The method illustrates a new macroencapsulation paradigm that may allow transplantation of a large number of cells with microscale spatial control,while maintaining an encapsulation device that is easily maneuverable and remaining integrated following transplantation.This study aims to investigate the design principles that relate to the translational application of micropatterned encapsulation membranes,namely,the control over the transplantation density/quantity of arrayed microtissues and the fidelity of pre-formed microtissues to micropatterns.Agarose hydrogel membranes with microwell patterns were used as a model encapsulation system to exemplify these principles.Our results show that high-density micropatterns can be generated in hydrogel membranes,which can potentially maximize the percentage volume of cellular content and thereby the transplantation efficiency of the encapsulation device.Direct seeding of microtissues demonstrates that microwell structures can efficiently position and organize pre-formed microtissues,suggesting the capability of micropatterned devices for manipulation of cellular transplants at multicellular or tissue levels.Detailed theoretical analysis was performed to provide insights into the relationship between micropatterns and the transplantation capacity of membrane-based encapsulation.Our study lays the ground for developing new macroencapsulation systems with microscale cellular/tissue patterns for regenerative transplantation.
基金supported by the National Natural Science Foundation of China (Grant No. 11072228, 11002129)the Science Foundation of China Academy of Engineering Physics (Grant No. 2011B0202005)+1 种基金the Open Foundation of State Key Laboratory of Explosion Science and Technology(Grant No. KFJJ09-06)the Open Foundation of State Key Laboratory of Advanced Technology for Materials Synthesis and Process-ing, Wuhan University of Technology
文摘Two types of Mg-Cu composition system graded density impactors used for complex loading (shock loading and quasi-isentropic compression) are designed by the elastic-plastic hydrodynamic method in this paper. Mixtures of metal powders in the Mg-Cu system are cast into a series of 17 and 25 uniform compositions ranging from 100% Mg to 100% Cu. The graded den- sity impactors are launched to the stationary 10 Ixm aluminum film and 12 mm LiF window targets by a two-stage light-gas gun in the National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, and the resulting wave profiles are measured with the DISAR system. Hydrodynamic simulation results are perfectly consistent with the experiments. Our work in this paper will set up a foundation for further research of controllable loading/releasing routes and rate experiments in the future.