As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequen...As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequently occurred in the graph of apparent resistivity pseudo-section or inverted geoelectrical section obtained from high-density electrical technique,and are difficult to remove.In this study,the authors explain the mechanism of the false anomalies and put forward the horizontal differential field method to identify the false anomalies.Based on the analysis of modeling results,this method is applied in the surveying data in Xinlei Quarry of Jiuquan,and the results confirm the effectiveness of the horizontal differential field method.展开更多
Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify th...Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.展开更多
In the multi-wave and multi-component seismic exploration,shear-wave will be split into fast wave and slow wave,when it propagates in anisotropic media. Then the authors can predict polarization direction and density ...In the multi-wave and multi-component seismic exploration,shear-wave will be split into fast wave and slow wave,when it propagates in anisotropic media. Then the authors can predict polarization direction and density of crack and detect the development status of cracks underground according to shear-wave splitting phenomenon. The technology plays an important role and shows great potential in crack reservoir detection. In this study,the improved particle swarm optimization algorithm based on shrinkage factor is combined with the Pearson correlation coefficient method to obtain the fracture azimuth angle and density. The experimental results show that the modified method can improve the convergence rate,accuracy,anti-noise performance and computational efficiency.展开更多
Shale reservoirs are typically very tight, and crack are only a small part of the reservoir. The directional arrangement of cracks leads to the anisotropic characteristics of shale, and the type of fluid filled in cra...Shale reservoirs are typically very tight, and crack are only a small part of the reservoir. The directional arrangement of cracks leads to the anisotropic characteristics of shale, and the type of fluid filled in cracks affects the shale reservoir evaluation and late development. Many rock physics theories and methods typically use second-and fourthorder crack density tensors to characterize the elastic anisotropy induced by cracks as well as the normal-to-tangential crack compliance ratio to distinguish between dry and saturated cracks. This study def ines an anisotropic crack f luid indicator for vertical transversely isotropy(VTI) media with vertical symmetry axis which is the integration of the normal-to-tangential crack compliance ratio in three directions. A new dimensionless fourth-order tensor, including crack f luid type, azimuth distribution, and geometric shape, is constructed by substituting the normal and tangential compliance into the fourth-order crack density tensor, which can also be used to identify the type of crack fluid in the VTI media. Using the Callovo–Oxfordian shale experimental data, the variation of the elastic properties of dry and saturated shale samples with axial stress is analyzed. The results demonstrate that the anisotropic crack f luid indicator of water-bearing shale samples is less than that of the dry shale samples and that the dimensionless fourth-order tensor of water-bearing shale samples is nearly one order of magnitude greater than that of the dry shale samples. Therefore, the anisotropic crack f luid indicator and dimensionless fourth-order tensor can ref lect the crack f luid type in shale samples and can be used for shale reservoir prediction and f luid identif ication.展开更多
The risk recognition model for preventing and monitoring the Coronary Heart Diseases (CHD) in the aged is proposed, which is based on the testing results of four indexes and includes Low Density Lipoprotein (LDL), Tot...The risk recognition model for preventing and monitoring the Coronary Heart Diseases (CHD) in the aged is proposed, which is based on the testing results of four indexes and includes Low Density Lipoprotein (LDL), Total Cholesterol (TC), Triglyceridemia (TG)and age. Some people who took the health checkup in Shanghai Xinhua Hospital are classified into 3 groups,and each group is associated with prevalence risk of contracting CHD. Then the fuzzy recognition method is applied to evaluate the risk of CHD. The accuracy rate is up to 85%. The model is applicable to not only analysis of risk in medical but also analysis of risk in finance, insurance and some other fields.展开更多
An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and fore...An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and foreground object pixels was performed by using color invariant features. In the shadow model learning stage, instead of a single Gaussian distribution, it was assumed that the density function computed on the values of chromaticity difference or bright difference, can be modeled as a mixture of Gaussian consisting of two density functions. Meanwhile, the Gaussian parameter estimation was performed by using EM algorithm. The estimates were used to obtain shadow mask according to two constraints. Finally, experiments were carried out. The visual experiment results confirm the effectiveness of proposed method. Quantitative results in terms of the shadow detection rate and the shadow discrimination rate(the maximum values are 85.79% and 97.56%, respectively) show that the proposed approach achieves a satisfying result with post-processing step.展开更多
This paper introduces the cost-sensitive feature weighting strategy and its application in intrusion detection. Cost factors and cost matrix are proposed to demonstrate the misclassification cost for IDS. How to get t...This paper introduces the cost-sensitive feature weighting strategy and its application in intrusion detection. Cost factors and cost matrix are proposed to demonstrate the misclassification cost for IDS. How to get the whole minimal risk, is mainly discussed in this paper in detail. From experiments, it shows that although decision cost based weight learning exists somewhat attack misclassification, it can achieve relatively low misclassification costs on the basis of keeping relatively high rate of recognition precision. Key words decision cost - feature weighting - intrusion detection CLC number TP 393. 08 Foundation item: Supported by the National Natural Science Foundation Key Research Plan of China (90104030) and “20 Century Education Development Plan”Biography: QIAN Quan(1972-), male, Ph. D. research direction: computer network, network security and artificial intelligence展开更多
文摘As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequently occurred in the graph of apparent resistivity pseudo-section or inverted geoelectrical section obtained from high-density electrical technique,and are difficult to remove.In this study,the authors explain the mechanism of the false anomalies and put forward the horizontal differential field method to identify the false anomalies.Based on the analysis of modeling results,this method is applied in the surveying data in Xinlei Quarry of Jiuquan,and the results confirm the effectiveness of the horizontal differential field method.
基金Supported by National Natural Science Foundation of China (No. 50778077 and No. 50608036)
文摘Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.
文摘In the multi-wave and multi-component seismic exploration,shear-wave will be split into fast wave and slow wave,when it propagates in anisotropic media. Then the authors can predict polarization direction and density of crack and detect the development status of cracks underground according to shear-wave splitting phenomenon. The technology plays an important role and shows great potential in crack reservoir detection. In this study,the improved particle swarm optimization algorithm based on shrinkage factor is combined with the Pearson correlation coefficient method to obtain the fracture azimuth angle and density. The experimental results show that the modified method can improve the convergence rate,accuracy,anti-noise performance and computational efficiency.
基金supported by the National Natural Science Foundation of China(Nos.41874146,41674130)National Key S&T Special Project of China(No.2017ZX05049-002,2016ZX05027-004-001)+2 种基金the Fundamental Research Funds for the Central University(No.18CX02061A)the Innovative Fund Project of China National Petroleum Corporation(No.2016D-5007-0301)the Scientific Research&Technology Development Project of China National Petroleum Corporation(No.2017D-3504)
文摘Shale reservoirs are typically very tight, and crack are only a small part of the reservoir. The directional arrangement of cracks leads to the anisotropic characteristics of shale, and the type of fluid filled in cracks affects the shale reservoir evaluation and late development. Many rock physics theories and methods typically use second-and fourthorder crack density tensors to characterize the elastic anisotropy induced by cracks as well as the normal-to-tangential crack compliance ratio to distinguish between dry and saturated cracks. This study def ines an anisotropic crack f luid indicator for vertical transversely isotropy(VTI) media with vertical symmetry axis which is the integration of the normal-to-tangential crack compliance ratio in three directions. A new dimensionless fourth-order tensor, including crack f luid type, azimuth distribution, and geometric shape, is constructed by substituting the normal and tangential compliance into the fourth-order crack density tensor, which can also be used to identify the type of crack fluid in the VTI media. Using the Callovo–Oxfordian shale experimental data, the variation of the elastic properties of dry and saturated shale samples with axial stress is analyzed. The results demonstrate that the anisotropic crack f luid indicator of water-bearing shale samples is less than that of the dry shale samples and that the dimensionless fourth-order tensor of water-bearing shale samples is nearly one order of magnitude greater than that of the dry shale samples. Therefore, the anisotropic crack f luid indicator and dimensionless fourth-order tensor can ref lect the crack f luid type in shale samples and can be used for shale reservoir prediction and f luid identif ication.
基金Projects supported by Swiss Re-Fudan Research FoundationShanghai Key-point Science & Constructive project
文摘The risk recognition model for preventing and monitoring the Coronary Heart Diseases (CHD) in the aged is proposed, which is based on the testing results of four indexes and includes Low Density Lipoprotein (LDL), Total Cholesterol (TC), Triglyceridemia (TG)and age. Some people who took the health checkup in Shanghai Xinhua Hospital are classified into 3 groups,and each group is associated with prevalence risk of contracting CHD. Then the fuzzy recognition method is applied to evaluate the risk of CHD. The accuracy rate is up to 85%. The model is applicable to not only analysis of risk in medical but also analysis of risk in finance, insurance and some other fields.
基金Project(50805023)supported by the National Natural Science Foundation of ChinaProject(BA2010093)supported by the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements,ChinaProject(2008144)supported by the Hexa-type Elites Peak Program of Jiangsu Province,China
文摘An efficient approach was proposed for discriminating shadows from moving objects. In the background subtraction stage, moving objects were extracted. Then, the initial classification for moving shadow pixels and foreground object pixels was performed by using color invariant features. In the shadow model learning stage, instead of a single Gaussian distribution, it was assumed that the density function computed on the values of chromaticity difference or bright difference, can be modeled as a mixture of Gaussian consisting of two density functions. Meanwhile, the Gaussian parameter estimation was performed by using EM algorithm. The estimates were used to obtain shadow mask according to two constraints. Finally, experiments were carried out. The visual experiment results confirm the effectiveness of proposed method. Quantitative results in terms of the shadow detection rate and the shadow discrimination rate(the maximum values are 85.79% and 97.56%, respectively) show that the proposed approach achieves a satisfying result with post-processing step.
文摘This paper introduces the cost-sensitive feature weighting strategy and its application in intrusion detection. Cost factors and cost matrix are proposed to demonstrate the misclassification cost for IDS. How to get the whole minimal risk, is mainly discussed in this paper in detail. From experiments, it shows that although decision cost based weight learning exists somewhat attack misclassification, it can achieve relatively low misclassification costs on the basis of keeping relatively high rate of recognition precision. Key words decision cost - feature weighting - intrusion detection CLC number TP 393. 08 Foundation item: Supported by the National Natural Science Foundation Key Research Plan of China (90104030) and “20 Century Education Development Plan”Biography: QIAN Quan(1972-), male, Ph. D. research direction: computer network, network security and artificial intelligence