针对现有视网膜血管分割技术存在视网膜血管分割精度不高和病灶区域误分割的问题,提出对U型网络改进,结合密集空洞卷积(dense atrous convolution,DAC)模块与残差挤压激励(residual squeeze and excitation,RSE)模块的视网膜血管分割模...针对现有视网膜血管分割技术存在视网膜血管分割精度不高和病灶区域误分割的问题,提出对U型网络改进,结合密集空洞卷积(dense atrous convolution,DAC)模块与残差挤压激励(residual squeeze and excitation,RSE)模块的视网膜血管分割模型(DACRSE-Unet)。该模型采用改进集成随机失活块(DropBlock)的残差结构,不仅可以构建深层网络来提取更复杂的血管特征,还可以有效缓解过拟合;此外,为了进一步提高网络的表达能力,在改进残差块的基础上引入挤压激励模块(squeeze and excitation,SE);同时,为获取血管更多的上下文信息,在模型中引入DAC模块来实现对视网膜血管的精准分割;最后,在不同数据集上进行验证。结果表明,DACRSE-Unet模型的接受者操作特性曲线下面积分别为0.9869和0.9964,灵敏度分别为0.8226和0.8779,准确率分别为0.9692和0.9830,整体分割效果比其他模型更好。展开更多
文摘针对现有视网膜血管分割技术存在视网膜血管分割精度不高和病灶区域误分割的问题,提出对U型网络改进,结合密集空洞卷积(dense atrous convolution,DAC)模块与残差挤压激励(residual squeeze and excitation,RSE)模块的视网膜血管分割模型(DACRSE-Unet)。该模型采用改进集成随机失活块(DropBlock)的残差结构,不仅可以构建深层网络来提取更复杂的血管特征,还可以有效缓解过拟合;此外,为了进一步提高网络的表达能力,在改进残差块的基础上引入挤压激励模块(squeeze and excitation,SE);同时,为获取血管更多的上下文信息,在模型中引入DAC模块来实现对视网膜血管的精准分割;最后,在不同数据集上进行验证。结果表明,DACRSE-Unet模型的接受者操作特性曲线下面积分别为0.9869和0.9964,灵敏度分别为0.8226和0.8779,准确率分别为0.9692和0.9830,整体分割效果比其他模型更好。