期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于残差挤压激励与密集空洞卷积的视网膜血管分割 被引量:3
1
作者 徐艳 张乾 吕义付 《湖北民族大学学报(自然科学版)》 CAS 2023年第3期360-367,共8页
针对现有视网膜血管分割技术存在视网膜血管分割精度不高和病灶区域误分割的问题,提出对U型网络改进,结合密集空洞卷积(dense atrous convolution,DAC)模块与残差挤压激励(residual squeeze and excitation,RSE)模块的视网膜血管分割模... 针对现有视网膜血管分割技术存在视网膜血管分割精度不高和病灶区域误分割的问题,提出对U型网络改进,结合密集空洞卷积(dense atrous convolution,DAC)模块与残差挤压激励(residual squeeze and excitation,RSE)模块的视网膜血管分割模型(DACRSE-Unet)。该模型采用改进集成随机失活块(DropBlock)的残差结构,不仅可以构建深层网络来提取更复杂的血管特征,还可以有效缓解过拟合;此外,为了进一步提高网络的表达能力,在改进残差块的基础上引入挤压激励模块(squeeze and excitation,SE);同时,为获取血管更多的上下文信息,在模型中引入DAC模块来实现对视网膜血管的精准分割;最后,在不同数据集上进行验证。结果表明,DACRSE-Unet模型的接受者操作特性曲线下面积分别为0.9869和0.9964,灵敏度分别为0.8226和0.8779,准确率分别为0.9692和0.9830,整体分割效果比其他模型更好。 展开更多
关键词 U型网络 视网膜血管 图像分割 残差挤压激励模块 注意力机制 密集空洞卷积模块
下载PDF
基于改进编解码网络的钢箱梁疲劳裂纹分割 被引量:3
2
作者 邓露 香超 +1 位作者 王维 曹然 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第8期66-72,共7页
针对基于图像的疲劳裂纹检测方法精度受焊缝、涂层等复杂背景因素影响较大的问题,提出了一种基于深度学习的空洞金字塔注意力网络(APA-Net)模型用于疲劳裂纹分割.在传统编解码网络的基础上引入预训练ResNet34模型、密集空洞卷积(DAC)模... 针对基于图像的疲劳裂纹检测方法精度受焊缝、涂层等复杂背景因素影响较大的问题,提出了一种基于深度学习的空洞金字塔注意力网络(APA-Net)模型用于疲劳裂纹分割.在传统编解码网络的基础上引入预训练ResNet34模型、密集空洞卷积(DAC)模块、尺度感知金字塔融合(SAPF)模块和注意力门控(AG)机制,极大地提升了模型提取多尺度上下文信息的能力.通过图像裁剪制作了包含多种干扰因素的钢箱梁疲劳裂纹分割数据集,然后利用该数据集对APA-Net,FCN,U-Net,Attention U-Net,U-Net++和CE-Net等经典网络进行测试,结果表明:所提出的APA-Net在复杂背景干扰下对钢箱梁表面图像中的疲劳裂纹提取能力最佳,分割结果的平均交并比达72.2%,比其他经典网络中表现最优的CE-Net的平均交并比提高了约4%.最后通过消融实验讨论了所提模块对裂纹分割精度的影响. 展开更多
关键词 疲劳裂纹检测 钢箱梁 复杂背景 编解码网络 密集空洞卷积模块
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部