期刊文献+
共找到452篇文章
< 1 2 23 >
每页显示 20 50 100
自学习稀疏密集连接卷积神经网络图像分类方法 被引量:3
1
作者 吴鹏 林国强 +1 位作者 郭玉荣 赵振兵 《信号处理》 CSCD 北大核心 2019年第10期1747-1752,共6页
通道剪枝是深度模型压缩的主要方法之一。针对密集连接卷积神经网络中,每一层都接收其前部所有卷积层的输出特征图作为输入,但并非每个后部层都需要所有先前层的特征,网络中存在很大冗余的缺点。本文提出一种自学习剪枝密集连接网络中... 通道剪枝是深度模型压缩的主要方法之一。针对密集连接卷积神经网络中,每一层都接收其前部所有卷积层的输出特征图作为输入,但并非每个后部层都需要所有先前层的特征,网络中存在很大冗余的缺点。本文提出一种自学习剪枝密集连接网络中冗余通道的方法,得到稀疏密集连接卷积神经网络。首先,提出了一种衡量每个卷积层中每个输入特征图对输出特征图贡献度大小的方法,贡献度小的输入特征图即为冗余特征图;其次,介绍了通过自学习,网络分阶段剪枝冗余通道的训练过程,得到了稀疏密集连接卷积神经网络,该网络剪枝了密集连接网络中的冗余通道,减少了网络参数,降低了存储和计算量;最后,为了验证本文方法的有效性,在图像分类数据集CIFAR-10/100上进行了实验,在不牺牲准确率的前提下减小了模型冗余。 展开更多
关键词 剪枝冗余通道 自学习 稀疏化密集连接卷积神经网络 图像分类
下载PDF
基于密集连接卷积神经网络的入侵检测技术研究 被引量:23
2
作者 缪祥华 单小撤 《电子与信息学报》 EI CSCD 北大核心 2020年第11期2706-2712,共7页
卷积神经网络在入侵检测技术领域中已得到广泛应用,一般地认为层次越深的网络结构其在特征提取、检测准确率等方面就越精确。但也伴随着梯度弥散、泛化能力不足且参数量大准确率不高等问题。针对上述问题,该文提出将密集连接卷积神经网... 卷积神经网络在入侵检测技术领域中已得到广泛应用,一般地认为层次越深的网络结构其在特征提取、检测准确率等方面就越精确。但也伴随着梯度弥散、泛化能力不足且参数量大准确率不高等问题。针对上述问题,该文提出将密集连接卷积神经网络(DCCNet)应用到入侵检测技术中,并通过使用混合损失函数达到提升检测准确率的目的。用KDD 99数据集进行实验,将实验结果与常用的LeNet神经网络、VggNet神经网络结构相比。分析显示在检测的准确率上有一定的提高,而且缓解了在训练过程中梯度弥散问题。 展开更多
关键词 入侵检测 卷积神经网络 密集连接 梯度弥散
下载PDF
基于密集连接卷积神经网络的远程监督关系抽取 被引量:8
3
作者 钱小梅 刘嘉勇 程芃森 《计算机科学》 CSCD 北大核心 2020年第2期157-162,共6页
密集连接卷积神经网络(DenseNet)是一种新型深度卷积神经网络架构,通过建立不同层间的连接关系,来确保网络层与层间最大程度的信息传输。在文本远程监督关系抽取任务中,针对现有神经网络方法使用浅层网络提取特征的局限,设计了一种基于... 密集连接卷积神经网络(DenseNet)是一种新型深度卷积神经网络架构,通过建立不同层间的连接关系,来确保网络层与层间最大程度的信息传输。在文本远程监督关系抽取任务中,针对现有神经网络方法使用浅层网络提取特征的局限,设计了一种基于密集连接方式的深度卷积神经网络模型。该模型采用五层卷积神经网络构成的密集连接模块和最大池化层作为句子编码器,通过合并不同层次的词法、句法和语义特征,来帮助网络学习特征,从而获取输入语句更丰富的语义信息,同时减轻深度神经网络的梯度消失现象,使得网络对自然语言的表征能力更强。模型在NYT-Freebase数据集上的平均准确率达到了82.5%,PR曲线面积达到了0.43。实验结果表明,该模型能够有效利用特征,并提高远程监督关系抽取的准确率。 展开更多
关键词 深度学习 关系抽取 远程监督 卷积神经网络 密集连接
下载PDF
DenseCNN-ATT:实体关系抽取的密集连接卷积神经网络
4
作者 李雅欣 王佳英 +1 位作者 单菁 邵明阳 《计算机与数字工程》 2021年第12期2483-2489,共7页
在远程监督(Distant Supervision,DS)实体关系抽取任务中,采用远程监督的方式虽然可以产生大量的标注数据,但是这种方法产生的数据集充满大量的噪声数据,从而会降低关系抽取的性能。为此,我们针对现有深度学习使用浅层和单一深层神经网... 在远程监督(Distant Supervision,DS)实体关系抽取任务中,采用远程监督的方式虽然可以产生大量的标注数据,但是这种方法产生的数据集充满大量的噪声数据,从而会降低关系抽取的性能。为此,我们针对现有深度学习使用浅层和单一深层神经网络模型提取特征的局限,设计了一个融合注意力机制的密集连接卷积神经网络模型——DenseCNN-ATT,该模型采用五层卷积深度的CNN,构成密集连接卷积模块作为句子编码器,通过增加特征通道数量来提高特征传递,减少了特征梯度的消失现象;此外,为进一步减少噪声影响,论文将网络的最大池化结果融合注意力机制,通过强调句子权重,来提升关系抽取性能。该模型在NYT数据集上的平均准确率达到了83.2%,相比于目前效果较好的浅层网络PCNN+ATT和深层网络ResCNN-9提升了9%~11%。实验证明,该模型能够充分利用有效的实例关系,在综合性能上明显优于目前效果较好的主流模型。 展开更多
关键词 密集连接 关系抽取 注意力机制 卷积神经网络 远程监督
下载PDF
密集连接卷积神经网络:让人工智能拥有更强大脑 被引量:3
5
作者 黄高 《上海信息化》 2018年第10期39-42,共4页
人工智能技术经过半个多世纪的发展,伴随着这个领域的几度兴起和沉寂,终于在新的千年借助互联网、大数据、高性能芯片等技术,逐渐走向成熟和实用。相信不久的将来,随着深度神经网络等基础性技术的不断进步,人工智能将进入各个行业... 人工智能技术经过半个多世纪的发展,伴随着这个领域的几度兴起和沉寂,终于在新的千年借助互联网、大数据、高性能芯片等技术,逐渐走向成熟和实用。相信不久的将来,随着深度神经网络等基础性技术的不断进步,人工智能将进入各个行业,彻底变革人们的生产和生活方式。 展开更多
关键词 人工智能技术 卷积神经网络 大脑 连接 密集 生活方式 互联网
下载PDF
基于密集连接时延神经网络的说话人识别算法
6
作者 和椿皓 常铁原 +1 位作者 潘立冬 王珺 《应用声学》 CSCD 北大核心 2024年第2期378-384,共7页
说话人识别技术是一项重要的生物特征识别技术。近年来,使用时延神经网络提取发声特征的说话人识别算法取得了突出成果。为进一步增强时延神经网络对说话人特征的提取能力,在不过多消耗计算资源的前提下提升识别准确率,通过对现有的说... 说话人识别技术是一项重要的生物特征识别技术。近年来,使用时延神经网络提取发声特征的说话人识别算法取得了突出成果。为进一步增强时延神经网络对说话人特征的提取能力,在不过多消耗计算资源的前提下提升识别准确率,通过对现有的说话人识别算法进行研究,提出一种带有注意力机制的密集连接时延神经网络用于说话人识别。密集连接的网络结构在增强不同网络层之间的信息复用的同时能有效控制模型体积。通道注意力机制和帧注意力机制帮助网络聚焦于更关键的细节特征,使得通过统计池化提取出的说话人特征更具有代表性。实验结果表明,在VoxCeleb1测试数据集上取得了1.40%的等错误率和0.15的最小检测代价标准,证明了在说话人识别任务上的有效性。 展开更多
关键词 说话人识别 深度学习 神经网络 密集连接 注意力机制
下载PDF
密集连接神经网络在远距离水声目标探测中的性能分析
7
作者 胡梦璐 冯海泓 +1 位作者 洪峰 毛海全 《声学技术》 CSCD 北大核心 2024年第6期782-789,共8页
由于水声目标辐射噪声的低信噪比特性,探测远距离水声目标具有一定挑战。为提升远距离水声目标探测的准确率,文章提出一种基于密集连接神经网络和自注意力机制的方法。该方法提取信号的梅尔倒谱系数作为特征,在密集连接神经网络头部添... 由于水声目标辐射噪声的低信噪比特性,探测远距离水声目标具有一定挑战。为提升远距离水声目标探测的准确率,文章提出一种基于密集连接神经网络和自注意力机制的方法。该方法提取信号的梅尔倒谱系数作为特征,在密集连接神经网络头部添加自注意力模块以捕获关键信息,经过多个密集块后输出探测结果。在实测数据集上进行实验,分析了自注意力机制添加与否、输入特征不同、接收端深度不同时模型的性能变化。应用在未来几天的数据测试模型的任务中,探测范围在小于10 km时,探测准确率为93.3%,探测范围扩大至20 km时,探测准确率为90.34%。实验结果表明,模型在信噪比不小于−6 dB时实现了水声目标探测,在增加更多的低信噪比样本后,仍具有一定探测能力,且其性能优于其他模型。此外,训练集包含多种信噪比条件下的数据时,探测性能会有进一步提升。 展开更多
关键词 密集连接神经网络 水声目标探测 深度学习 特征提取 信噪比
下载PDF
基于密集连接卷积神经网络的下壁心肌梗死检测 被引量:6
8
作者 熊鹏 薛彦平 +3 位作者 刘明 杜海曼 王洪瑞 刘秀玲 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2020年第1期142-149,共8页
下壁心肌梗死是一种病死率高的急性缺血性心脏病,易诱发恶性心律失常、心率衰竭、心源性休克等危及生命的并发症。因而,开展对下壁心肌梗死准确高效的早期诊断研究具有重要的临床价值。心电图是早期诊断下壁心肌梗死最敏感的手段。本文... 下壁心肌梗死是一种病死率高的急性缺血性心脏病,易诱发恶性心律失常、心率衰竭、心源性休克等危及生命的并发症。因而,开展对下壁心肌梗死准确高效的早期诊断研究具有重要的临床价值。心电图是早期诊断下壁心肌梗死最敏感的手段。本文提出了一种基于密集连接卷积神经网络的下壁心肌梗死检测方法。该方法将Ⅱ、Ⅲ和aVF导联的原始心电信号串接数据作为模型的输入,利用卷积层的尺度不变性提取心电信号中具有鲁棒性的特征,并通过不同层间密集连接的方式加强了心电信号特征的传递,使得网络能够自动学习心电信号中鲁棒性强且辨识度高的有效特征,从而实现下壁心肌梗死的准确检测。本文还采用德国国家计量学研究所诊断公共心电数据库进行验证,本文模型的准确率、敏感性和特异性分别达到了99.95%、100%和99.90%。在含有噪声的情况下,模型的准确率、敏感性和特异性也均超过99%。基于本文研究结果,期望今后可在临床环境中引入本文方法,以帮助医生快速诊断下壁心肌梗死。 展开更多
关键词 下壁心肌梗死 心电图 密集连接卷积神经网络 特征提取
原文传递
密集连接扩张卷积神经网络的单幅图像去雾 被引量:7
9
作者 刘广洲 李金宝 +1 位作者 任东东 舒明雷 《计算机科学与探索》 CSCD 北大核心 2021年第1期185-194,共10页
针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张... 针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张率的扩张卷积,使网络在充分聚合上下文特征信息时不损失空间分辨率,并避免了网格伪影的产生。最后,为了提高算法的去雾能力,将该网络划分为多个阶段,并在每个阶段引入侧输出模块,从而获得更精确的特征信息。实验结果表明,所提出的去雾算法无论是在合成数据集上还是在真实数据集上都取得了较好的去雾效果,恢复的色彩更接近无雾图像,并且定量评价指标峰值信噪比(PSNR)和结构相似性(SSIM)均优于其他对比方法。 展开更多
关键词 图像去雾 卷积神经网络(CNN) 密集连接 扩张卷积
下载PDF
用于说话人识别的密集多分支时延神经网络
10
作者 和椿皓 常铁原 潘立冬 《应用声学》 CSCD 北大核心 2024年第5期949-955,共7页
时延神经网络是较早应用于说话人识别领域的一类神经网络。为实现更好的识别性能,近年来一些改进工作围绕加深或拓宽其网络结构进行。在对密集连接卷积网络以及多分支网络结构进行研究的基础上,提出一种密集多分支时延神经网络,用以进... 时延神经网络是较早应用于说话人识别领域的一类神经网络。为实现更好的识别性能,近年来一些改进工作围绕加深或拓宽其网络结构进行。在对密集连接卷积网络以及多分支网络结构进行研究的基础上,提出一种密集多分支时延神经网络,用以进一步提升小体积模型对说话人特征的提取能力。在使用密集连接实现特征重用的基础上,并行多分支结构能同时对同一输入在不同分辨率下进行特征提取。在VoxCeleb1测试集、VoxCeleb1-H、VoxCeleb1-E上进行测试表明,该网络能在模型参数量较小的前提下实现准确的说话人识别,以便应用在一些存储空间受限的本地说话人识别场景中。 展开更多
关键词 说话人识别 时延神经网络 多分支神经网络 密集连接 深度学习
下载PDF
基于DenseNet卷积神经网络的短期风电预测方法 被引量:2
11
作者 殷林飞 蒙雨洁 《综合智慧能源》 CAS 2024年第7期12-20,共9页
风能作为一种清洁、可再生的能源,在能源转型中扮演着至关重要的角色,准确预测风电出力对电力系统的安全高效运行非常重要,然而风速的波动性和随机性,对风电预测带来了挑战。为了提高风电预测的准确性,提出了一种基于DenseNet卷积神经... 风能作为一种清洁、可再生的能源,在能源转型中扮演着至关重要的角色,准确预测风电出力对电力系统的安全高效运行非常重要,然而风速的波动性和随机性,对风电预测带来了挑战。为了提高风电预测的准确性,提出了一种基于DenseNet卷积神经网络的短期风电预测模型。该模型通过精简DenseNet201网络得到了拥有出色的密集连接结构和适当深度、宽度的DenseNet160网络,不仅能缓解训练过程中梯度消失现象,还能通过密集连接将浅层的信息反映到深层,实现深度监督。基于巴西纳塔尔地区378 d的风力数据集,采用DenseNet160网络以及27种算法对未来一天的风力发电情况进行预测。结果表明:DenseNet160网络的平均绝对误差、均方误差以及平均绝对百分误差比其他算法分别降低了至少10.89%,4.98%,8.68%;同时,与使用相同数据集的混合经济模型相比,DenseNet160网络的MAE值小了25.56%。说明该模型能精准地拟合风力发电数据,获得可靠的风力预测结果。 展开更多
关键词 风电预测 可再生能源 DenseNet 卷积神经网络 密集连接 梯度消失
下载PDF
基于可变形卷积神经网络的遥感影像密集区域车辆检测方法 被引量:21
12
作者 高鑫 李慧 +5 位作者 张义 闫梦龙 张宗朔 孙显 孙皓 于泓峰 《电子与信息学报》 EI CSCD 北大核心 2018年第12期2812-2819,共8页
车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上... 车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上述问题,该文提出基于端到端的神经网络模型DF-RCNN以提高车辆密集区域的检测精度。首先,在特征提取阶段,DF-RCNN模型将深浅层特征图的分辨率统一并融合;其次,DFRCNN模型结合可变形卷积和可变形感兴趣区池化模块,通过加入少量的参数和计算量以学习目标的几何形变。实验结果表明,该文提出的模型针对密集区域的车辆目标具有较好的检测性能。 展开更多
关键词 遥感影像 车辆检测 密集区域 端到端卷积神经网络
下载PDF
交叉连接的少层残差卷积神经网络 被引量:3
13
作者 李国强 陈文华 高欣 《小型微型计算机系统》 CSCD 北大核心 2021年第3期510-515,共6页
最近的研究表明,卷积神经网络的性能可以通过采用跨层连接来提高,典型的残差网络(Res Net)便通过恒等映射方法取得了非常好的图像识别效果.但是通过理论分析,在残差模块中,跨层连接线的布局并没有达到最优设置,造成信息的冗余和层数的浪... 最近的研究表明,卷积神经网络的性能可以通过采用跨层连接来提高,典型的残差网络(Res Net)便通过恒等映射方法取得了非常好的图像识别效果.但是通过理论分析,在残差模块中,跨层连接线的布局并没有达到最优设置,造成信息的冗余和层数的浪费,为了进一步提高卷积神经网络的性能,文章设计了两种新型的网络结构,分别命名为C-FnetO和C-FnetT,它们在残差模块的基础上进行优化并且具有更少的卷积层层数,同时通过在MNIST,CIFAR-10,CIFAR-100和SVHN公开数据集上的一系列对比实验表明,与最先进的卷积神经网络对比,C-FnetO和C-FnetT网络获得了相对更好的图像识别效果,其中C-FnetT网络的性能最佳,在四种数据集上均取得了最高的准确率. 展开更多
关键词 卷积神经网络 交叉跨层连接 C-FnetO C-FnetT ResNet
下载PDF
卷积神经网络的图像识别算法研究与实现 被引量:1
14
作者 侯贺 王敏 +1 位作者 孟娇 张文颖 《信息与电脑》 2024年第10期94-96,共3页
文章通过研究卷积神经网络(Convolutional Neural Networks,CNN)的架构、卷积和池化操作以及全连接等,搭建并配置五种不同的CNN模型(LeNet、AlexNet、VGGNet、InceptionNet、ReNet),利用两个数据集的训练集和测试集分别训练和测试五种... 文章通过研究卷积神经网络(Convolutional Neural Networks,CNN)的架构、卷积和池化操作以及全连接等,搭建并配置五种不同的CNN模型(LeNet、AlexNet、VGGNet、InceptionNet、ReNet),利用两个数据集的训练集和测试集分别训练和测试五种模型的效果,最后使用准确率和交叉损失熵评估五种模型。 展开更多
关键词 卷积神经网络 卷积 池化 连接 图像识别
下载PDF
基于密集卷积神经网络的遥感影像超分辨率重建 被引量:5
15
作者 王植 李安翼 方锦雄 《测绘与空间地理信息》 2020年第8期4-8,共5页
针对传统遥感影像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,本文提出了一种基于密集卷积神经网络的遥感影像超分辨率重建的方法。该网络直接将低分辨率遥感影像作为网络的初始输入,通过密集卷积神经网络学习影像... 针对传统遥感影像超分辨率重建方法依赖同一场景多时相图像序列且需预先配准等缺点,本文提出了一种基于密集卷积神经网络的遥感影像超分辨率重建的方法。该网络直接将低分辨率遥感影像作为网络的初始输入,通过密集卷积神经网络学习影像的高阶表示,获得更具有表达能力的深层特征;同时,在网络中采用并行的1×1卷积滤波器结构,通过该结构减少模型参数;在重建网络中使用亚像素卷积可以更快地实现特征图的重建。在UCMerced_LandUse公共数据集上的实验表明:本文的网络模型提升了传统深度网络的影像重建性能,增强了重建图像的纹理细节并改善影像边缘失真,提升了重建影像的性能。 展开更多
关键词 遥感影像 超分辨率重建 密集卷积网络 并行卷积神经网络 亚像素卷积
下载PDF
改进卷积神经网络的SAR图像识别方法
16
作者 罗曼 李新 《空天预警研究学报》 CSCD 2024年第3期162-166,172,共6页
针对SAR图像存在散斑噪声且各个类别的区分度不高而导致的目标特征提取难的问题,提出了一种改进卷积神经网络的SAR图像识别方法.采用不同尺度的卷积层提取SAR图像特征,设计了一种多尺度特征提取模块,充分提取图像的隐含信息;对经典的残... 针对SAR图像存在散斑噪声且各个类别的区分度不高而导致的目标特征提取难的问题,提出了一种改进卷积神经网络的SAR图像识别方法.采用不同尺度的卷积层提取SAR图像特征,设计了一种多尺度特征提取模块,充分提取图像的隐含信息;对经典的残差神经网络残差块进行改进,设计了一种密集残差块结构,为后面层提供丰富的细节信息,保证输出特征的表达能力.最后在MSTAR数据集上进行了验证.实验结果表明,本文模型在测试集上的识别率达到了99.17%,优于其他方法.对测试集加入不同比例的椒盐噪声,本文模型比其他CNN识别率高,说明本文模型具有较好的鲁棒性. 展开更多
关键词 卷积神经网络 SAR图像 多尺度特征提取模块 密集残差块 鲁棒性
下载PDF
从全连接网络到卷积神经网络的教学探讨 被引量:1
17
作者 谢红霞 吴明晖 《福建电脑》 2020年第7期128-132,共5页
在深度学习课程的学习中,从全连接神经网络到卷积神经网络是一个大的跨越,初学者首次接触卷积、权值共享、特征提取、池化等很多陌生的概念往往没有头绪,也很难从前面的学习内容中顺畅过渡,需要设计一条前后衔接和呼应、贯穿始终的明确... 在深度学习课程的学习中,从全连接神经网络到卷积神经网络是一个大的跨越,初学者首次接触卷积、权值共享、特征提取、池化等很多陌生的概念往往没有头绪,也很难从前面的学习内容中顺畅过渡,需要设计一条前后衔接和呼应、贯穿始终的明确主线,使学习曲线变得平缓。以经典的MNIST手写字符识别案例为引导,以识别精度提升为目标,用设问的方式,逐步深入,理解解决问题的逻辑,同时也掌握核心概念,并提炼出一条从单个神经元的最简单全连接网络到卷积神经网络的学习路径。 展开更多
关键词 深度学习 连接网络 卷积神经网络 教学设计
下载PDF
一种密集卷积神经网络的电视语音响度补偿方法
18
作者 谢仁礼 秦宇 罗雪倩 《电声技术》 2021年第6期18-24,共7页
现有的电视语音响度补偿是针对人耳听阈和听力障碍的损失进行均衡补偿,这类方法会放大同频段的非人声。针对这类方法的缺陷,提出利用深度学习语音增强技术将人声从电视节目音频中分离出来,使用户直接听到清晰人声。对此提出密集连接卷... 现有的电视语音响度补偿是针对人耳听阈和听力障碍的损失进行均衡补偿,这类方法会放大同频段的非人声。针对这类方法的缺陷,提出利用深度学习语音增强技术将人声从电视节目音频中分离出来,使用户直接听到清晰人声。对此提出密集连接卷积网络(Densely Connected Convolutional Network,DenseNet)结合卷积神经网络编解码器(Convolutional Encoder-Decoder,CED)结构的新型神经网络语音增强模型。该模型量级较轻,能够在电视上实时运行,与同量级网络参数的卷积神经网络(Convolutional Neural Networks,CNN)语音增强模型相比,效果更好且模型更小。 展开更多
关键词 密集连接卷积神经网络 卷积编解码器 实时语音增强 残差连接
下载PDF
基于可变形密集卷积神经网络的布匹瑕疵检测 被引量:5
19
作者 庄集超 郭保苏 吴凤和 《计量学报》 CSCD 北大核心 2023年第2期178-185,共8页
针对传统布匹瑕疵检测方法无法适用于尺度变化大、面积占比小的瑕疵特征,提出一种基于可变形密集卷积神经网络模型。为了关注到图像中距离较远的特征信息,并避免捕获纹理信息,采用可变形卷积来增强特征的语义表达能力。通过在卷积层中... 针对传统布匹瑕疵检测方法无法适用于尺度变化大、面积占比小的瑕疵特征,提出一种基于可变形密集卷积神经网络模型。为了关注到图像中距离较远的特征信息,并避免捕获纹理信息,采用可变形卷积来增强特征的语义表达能力。通过在卷积层中设置卷积像素相对于中心像素各自的x,y方向偏移量,并利用反向传播训练偏移量以增加感受野的变形适应性。同时,采用密集连接的方式以保持模型不遗漏边缘瑕疵信息。最后,根据瑕疵类别预测和位置边框回归实现瑕疵的分类和定位检测。实验结果表明:该模型的平均检测精度和单类目标检测精度标准差分别为93.53%,2.5139,相比于其他方法更具有竞争力。 展开更多
关键词 计量学 布匹瑕疵检测 可变形卷积 密集连接 神经网络
下载PDF
全卷积神经网络与全连接条件随机场中的左心室射血分数精准计算 被引量:3
20
作者 刘晓鸣 雷震 +4 位作者 何刊 张惠茅 郭树旭 张歆东 李雪妍 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第3期431-438,共8页
左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并... 左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并输出概率图;之后采用3D全连接条件随机场对概率图进行后处理,完成像素级的精准密度预测;最后对左心室分割结果进行3D重建,并计算左心室舒张末期容积和收缩末期容积,进而计算出射血分数.实验结果表明,该方法能够实现左心室射血分数的精确且高效的计算,对左心室射血分数的平均预测误差为4.67%,各步骤耗时短. 展开更多
关键词 左心室射血分数计算 深度学习 卷积神经网络 连接条件随机场
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部