利用2013—2017年6—8月汉中雷达资料,基于等高平面位置显示(constant altitude plan position indicator,CAPPI)上的对流区判识结果,统计分析汉中及其周边地区暖季对流活动气候特征,发现该地区对流活动高发地主要位于大巴山区、秦岭东...利用2013—2017年6—8月汉中雷达资料,基于等高平面位置显示(constant altitude plan position indicator,CAPPI)上的对流区判识结果,统计分析汉中及其周边地区暖季对流活动气候特征,发现该地区对流活动高发地主要位于大巴山区、秦岭东南麓和汉中以东的秦岭大巴山过渡带,其中大巴山的对流频数最高、较高频数的区域也最广,秦岭东南麓及大巴山过渡带次之,汉中盆地西部对流频数最少。7月对流活动最频繁,6月最少,对流频数及面积也呈明显的日变化特征。对流高发区位置与山地地形特征高相关:大巴山区对流频数高值区与地形高处接近重合,秦岭东南麓的高值区则位于山坡处。对流伸展高度基本都在7 km以下,其中4~5 km高度占比最高。基于再分析资料的分析发现,7—8月,四川盆地东部维持CAPE高值中心,其位置与四川盆地北侧的大巴山区非常接近,这也是大巴山区持续为对流频数高值中心的可能原因之一。展开更多
The laminar boundary layer theory is used to analyze the film condensation on a vertical plate. The calculated result is well consistent with the experiment and empirical relation of the laminar film condensation. A c...The laminar boundary layer theory is used to analyze the film condensation on a vertical plate. The calculated result is well consistent with the experiment and empirical relation of the laminar film condensation. A convection number E is presented,which shows the contribution of convection to heat-transfer in film condensation. When E is less than 1,the condensation region is controlled by conduction. When E is far less than 1,the region is called Nusselt region. When E is larger than 1,the region of condensation is controlled by convection. When E is much more than 1,Co_m is proportional to Re_L^1/3.展开更多
A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Nume...A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained.展开更多
The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and res...The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and results are described and carried out. Results indicate that heat transfer coefficient (HTC) is increased with the increase of blowing ratio. When the blowing ratio is lower, the distribution of HTC along the heated wall can be divided into three regions. For larger blowing ratio or diameter, the cooling characteristics oi parallel-inlet film holes are similar to those of convective heat transfer around flat. Furthermore, when hole diameter is deter- mined, the arrangement patterns of film hole and the blowing ratio take a great influence on HTC.展开更多
Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed num...Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed numerically by applying the Brinkman model-a modified form of Darcy model giving consideration to the viscous effect. The results show that: (1)the permeability ratio (K*=Ky/Kx) is an important factor affecting natural convection heat transfer in the porous media. As K' decreases, the circulation intensity of the natural convectioncells increase significantly, resulting in an enhancement of heat transfer coefficient; (2)the increase of Darcy number (aa=Ky/H2) implies that the viscous effect is more significant. As Da≥10-, there exists a certain difference between the Darcy model and the Brinkman model. It is more significant at a lower permeability ratio. In particalar, with K*≤0. 25, the Nusselt number for Da=10-3 would differ form that of Darcy model up to an amount of 30K. The Darcy flow as depicted by Darcy model is no longer existing and an analysis neglecting the viscous effect will inevitably be of considerable error.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage ana...Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage analysis apparatus and the convective combustion characteristic of MPP was measured by a large volume closed bomb, respectively. Rasults Statistical physical model of burning in the micropore and granular burning were developed. The burning rate equation of steady-state convective combustion of MPP was obtained. Conclusions This model correlates the convective burning rate with micropores para- meters for the first time,and the calculating values of convective burning rate are in agreement with test results.The model also can be used to estimate the effects of microporous parame- ters, basic mass burning rate, MPP density and pressure in combustion chamber on the convective combustion characteristics of MPP.展开更多
[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with soundi...[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.展开更多
文摘利用2013—2017年6—8月汉中雷达资料,基于等高平面位置显示(constant altitude plan position indicator,CAPPI)上的对流区判识结果,统计分析汉中及其周边地区暖季对流活动气候特征,发现该地区对流活动高发地主要位于大巴山区、秦岭东南麓和汉中以东的秦岭大巴山过渡带,其中大巴山的对流频数最高、较高频数的区域也最广,秦岭东南麓及大巴山过渡带次之,汉中盆地西部对流频数最少。7月对流活动最频繁,6月最少,对流频数及面积也呈明显的日变化特征。对流高发区位置与山地地形特征高相关:大巴山区对流频数高值区与地形高处接近重合,秦岭东南麓的高值区则位于山坡处。对流伸展高度基本都在7 km以下,其中4~5 km高度占比最高。基于再分析资料的分析发现,7—8月,四川盆地东部维持CAPE高值中心,其位置与四川盆地北侧的大巴山区非常接近,这也是大巴山区持续为对流频数高值中心的可能原因之一。
文摘The laminar boundary layer theory is used to analyze the film condensation on a vertical plate. The calculated result is well consistent with the experiment and empirical relation of the laminar film condensation. A convection number E is presented,which shows the contribution of convection to heat-transfer in film condensation. When E is less than 1,the condensation region is controlled by conduction. When E is far less than 1,the region is called Nusselt region. When E is larger than 1,the region of condensation is controlled by convection. When E is much more than 1,Co_m is proportional to Re_L^1/3.
基金Project(51276203)supported by the National Natural Science Foundation of China
文摘A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained.
文摘The parallel-inlet holes with one-row, two-row and three-row film hole arrangements and different di- ameters are proposed to experimentally study their cooling characteristics. Detailed experimental processes and results are described and carried out. Results indicate that heat transfer coefficient (HTC) is increased with the increase of blowing ratio. When the blowing ratio is lower, the distribution of HTC along the heated wall can be divided into three regions. For larger blowing ratio or diameter, the cooling characteristics oi parallel-inlet film holes are similar to those of convective heat transfer around flat. Furthermore, when hole diameter is deter- mined, the arrangement patterns of film hole and the blowing ratio take a great influence on HTC.
文摘Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed numerically by applying the Brinkman model-a modified form of Darcy model giving consideration to the viscous effect. The results show that: (1)the permeability ratio (K*=Ky/Kx) is an important factor affecting natural convection heat transfer in the porous media. As K' decreases, the circulation intensity of the natural convectioncells increase significantly, resulting in an enhancement of heat transfer coefficient; (2)the increase of Darcy number (aa=Ky/H2) implies that the viscous effect is more significant. As Da≥10-, there exists a certain difference between the Darcy model and the Brinkman model. It is more significant at a lower permeability ratio. In particalar, with K*≤0. 25, the Nusselt number for Da=10-3 would differ form that of Darcy model up to an amount of 30K. The Darcy flow as depicted by Darcy model is no longer existing and an analysis neglecting the viscous effect will inevitably be of considerable error.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
文摘Aim To develop a physical and mathematical model related to micropore para- meters of steady-state convective combustion of micropore propellants(MPP). Methods The micropore parameters were measured by WXT-88 mage analysis apparatus and the convective combustion characteristic of MPP was measured by a large volume closed bomb, respectively. Rasults Statistical physical model of burning in the micropore and granular burning were developed. The burning rate equation of steady-state convective combustion of MPP was obtained. Conclusions This model correlates the convective burning rate with micropores para- meters for the first time,and the calculating values of convective burning rate are in agreement with test results.The model also can be used to estimate the effects of microporous parame- ters, basic mass burning rate, MPP density and pressure in combustion chamber on the convective combustion characteristics of MPP.
基金Supported by Science and Technology Development Project of Shandong Science and Technology Hall(2010GSF10805)National Natural Science Foundation of China(41140036)~~
文摘[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.