随着目前空战武器装备的迅猛发展,对于高空高速大机动目标的轨迹预测越来越占据重要的战略地位。为了解决目前存在的目标轨迹预测不足的问题,本文提出了融合小波分解(wavelet decomposition,WD)和长短期记忆(long short term memory,LS...随着目前空战武器装备的迅猛发展,对于高空高速大机动目标的轨迹预测越来越占据重要的战略地位。为了解决目前存在的目标轨迹预测不足的问题,本文提出了融合小波分解(wavelet decomposition,WD)和长短期记忆(long short term memory,LSTM)网络的模型来对机动目标的轨迹进行预测。首先,通过小波分解将输入的轨迹时间序列分解为1个低频分量(CD1)和3个高频分量(CA1,CA2,CA3)。然后,利用长短期记忆网络对时间序列处理的优势进行分量预测。最后,将分量预测结果进行重构并与原始轨迹进行对比验证,结果表明所提模型对于轨迹预测具有较高的精确度。为了排除实验结果的偶然性,本文用两组数据进行验证。通过对比实验显示,所提模型与其他两种模型相比预测误差更小。展开更多
文摘随着目前空战武器装备的迅猛发展,对于高空高速大机动目标的轨迹预测越来越占据重要的战略地位。为了解决目前存在的目标轨迹预测不足的问题,本文提出了融合小波分解(wavelet decomposition,WD)和长短期记忆(long short term memory,LSTM)网络的模型来对机动目标的轨迹进行预测。首先,通过小波分解将输入的轨迹时间序列分解为1个低频分量(CD1)和3个高频分量(CA1,CA2,CA3)。然后,利用长短期记忆网络对时间序列处理的优势进行分量预测。最后,将分量预测结果进行重构并与原始轨迹进行对比验证,结果表明所提模型对于轨迹预测具有较高的精确度。为了排除实验结果的偶然性,本文用两组数据进行验证。通过对比实验显示,所提模型与其他两种模型相比预测误差更小。