Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time...This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN.展开更多
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In...Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.展开更多
Directing at the non-linear dynamic characteristics of water inrush from coal seam floor and by the analysis of the shortages of current forecast methods for water inrush from coal seam floor, a new forecast method wa...Directing at the non-linear dynamic characteristics of water inrush from coal seam floor and by the analysis of the shortages of current forecast methods for water inrush from coal seam floor, a new forecast method was raised based on wavelet neural network (WNN) that was a model combining wavelet function with artificial neural network. Firstly basic principle of WNN was described, then a forecast model for water inrush from coal seam floor based on WNN was established and analyzed, finally an example of forecasting the quantity of water inrush from coal floor was illustrated to verify the feasibility and superiority of this method. Conclusions show that the forecast result based on WNN is more precise and that using WNN model to forecast the quantity of water inrush from coal seam floor is feasible and practical.展开更多
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin...An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.展开更多
Wind electricity power has fluctuation, and accurate and reasonable wind electricity power prediction is very important for solving wind electricity network and combination. This paper takes an analysis of a lot of ac...Wind electricity power has fluctuation, and accurate and reasonable wind electricity power prediction is very important for solving wind electricity network and combination. This paper takes an analysis of a lot of actual data of a certain wind electricity field. Through wavelet neural network and time series method rolling, it can predict the overall power of wind electricity field. The result shows that for the original data of sampling time length and large sampling frequency, the model constructed by this paper has very good prediction effect. Because of the fan installation position, wind electricity fan flow effect and other random factor influence, wind electricity field overall power and single unit power distribution have difference. Through comparing with the time series parameters, it puts forward that single wind electricity unit power has smooth effect for overall power of wind electricity field. Finally, it summarizes the prediction effect and puts forward some reasonable suzestions for wind electricity network troblems.展开更多
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
文摘This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN.
基金supported by the National Key Research and Development Program of China [grant number2017YFA0604500]
文摘Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.
文摘Directing at the non-linear dynamic characteristics of water inrush from coal seam floor and by the analysis of the shortages of current forecast methods for water inrush from coal seam floor, a new forecast method was raised based on wavelet neural network (WNN) that was a model combining wavelet function with artificial neural network. Firstly basic principle of WNN was described, then a forecast model for water inrush from coal seam floor based on WNN was established and analyzed, finally an example of forecasting the quantity of water inrush from coal floor was illustrated to verify the feasibility and superiority of this method. Conclusions show that the forecast result based on WNN is more precise and that using WNN model to forecast the quantity of water inrush from coal seam floor is feasible and practical.
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.
文摘Wind electricity power has fluctuation, and accurate and reasonable wind electricity power prediction is very important for solving wind electricity network and combination. This paper takes an analysis of a lot of actual data of a certain wind electricity field. Through wavelet neural network and time series method rolling, it can predict the overall power of wind electricity field. The result shows that for the original data of sampling time length and large sampling frequency, the model constructed by this paper has very good prediction effect. Because of the fan installation position, wind electricity fan flow effect and other random factor influence, wind electricity field overall power and single unit power distribution have difference. Through comparing with the time series parameters, it puts forward that single wind electricity unit power has smooth effect for overall power of wind electricity field. Finally, it summarizes the prediction effect and puts forward some reasonable suzestions for wind electricity network troblems.