期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于小波神经网络预测的Ad Hoc网络分簇算法 被引量:1
1
作者 沙毅 黄烨 +1 位作者 黄丽 张立立 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期1233-1236,共4页
针对Ad Hoc网络拓扑结构的动态特性,利用小波神经网络预测模型对节点地理位置进行预测.将预测的总保持时间与阈值比较,可以测得簇在下一时刻的稳定性.如果该簇结构在下一时刻趋于不稳定,则在链路失效之前启动路由预修复机制,以避免链路... 针对Ad Hoc网络拓扑结构的动态特性,利用小波神经网络预测模型对节点地理位置进行预测.将预测的总保持时间与阈值比较,可以测得簇在下一时刻的稳定性.如果该簇结构在下一时刻趋于不稳定,则在链路失效之前启动路由预修复机制,以避免链路频繁断裂,从而大幅提高了网络性能.仿真结果表明,与传统最小ID算法和未加预测机制的LWCA分簇算法进行比较,所提出的分簇算法分组投递率分别提高了7%和5%,路由中断次数降低了约63%和50%. 展开更多
关键词 AD HOC网络 加权分簇算法 AODV 地理位置预测 小波神经网络预测
下载PDF
加热炉炉温的小波神经网络预测控制策略 被引量:2
2
作者 田建艳 代正梅 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期48-52,共5页
针对钢坯加热炉的大滞后、非线性、不确定性等特点,提出采用小波神经网络预测控制策略对加热炉炉温进行控制,研究炉温的小波神经网络预测模型、小波神经网络优化控制器,以及反馈校正的设计与实现。结合生产实际,以现场采集的炉温数据进... 针对钢坯加热炉的大滞后、非线性、不确定性等特点,提出采用小波神经网络预测控制策略对加热炉炉温进行控制,研究炉温的小波神经网络预测模型、小波神经网络优化控制器,以及反馈校正的设计与实现。结合生产实际,以现场采集的炉温数据进行了大量的仿真研究。结果表明,该控制策略是可行的、有效的。 展开更多
关键词 钢坯加热炉 炉温控制 小波神经网络预测控制策略
下载PDF
冲击地压AE时间序列小波神经网络预测模型 被引量:11
3
作者 谭云亮 孙中辉 杜学东 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2000年第z1期1034-1036,共3页
针对冲击地压监测 AE时间序列的特点 ,建立了由伸缩和平移因子决定的小波基函数代替 Sigmoid等传递函数的小波神经网络预测模型 ,避免了传统神经网络需要人为干预网络结构参数的不足。实例分析表明 ,该模型拟和预测精度高 ,具有重要的... 针对冲击地压监测 AE时间序列的特点 ,建立了由伸缩和平移因子决定的小波基函数代替 Sigmoid等传递函数的小波神经网络预测模型 ,避免了传统神经网络需要人为干预网络结构参数的不足。实例分析表明 ,该模型拟和预测精度高 ,具有重要的应用价值。 展开更多
关键词 小波神经网络 冲击地压 预测
下载PDF
施工场景下灰色小波神经网络短时交通量预测模型研究
4
作者 孙瑶 李挥剑 钱哨 《青海交通科技》 2023年第1期25-30,共6页
在城市道路施工场景下应用短时交通量预测对提高施工区域交通效率及安全水平至关重要。考虑到施工场景下短时交通量历史样本量小且样本呈现非线性的特点,引入灰色预测模型,构建施工场景下的灰色小波神经网络短时交通量预测模型。以行宫... 在城市道路施工场景下应用短时交通量预测对提高施工区域交通效率及安全水平至关重要。考虑到施工场景下短时交通量历史样本量小且样本呈现非线性的特点,引入灰色预测模型,构建施工场景下的灰色小波神经网络短时交通量预测模型。以行宫西大街由西向东断面的交通量数据为例,分别基于小波神经网络短时交通量预测模型、灰色小波神经网络短时交通量预测模型,利用Matlab进行训练。结果显示,灰色小波神经网络短时交通量预测结果的平均绝对误差、平均相对误差和均方误差相较于小波神经网络短时交通量预测模型,分别降低了74.14%、75.21%和92.70%,该模型对城市道路施工场景下的短时交通量预测精确度更高。 展开更多
关键词 城市道路 施工场景 短时交通量预测 灰色小波神经网络预测模型
下载PDF
基于小波神经网络模型的公交客流预测 被引量:2
5
作者 贾庆林 晋民杰 +1 位作者 张涛 孙帆 《武汉轻工大学学报》 2020年第3期50-54,共5页
为预测更精确的客流量数据,达到公交出行的最佳效果。首先结合小波变换理论及BP神经网络的相关知识,建立一种基于小波神经网络的预测模型;其次选取某个城市的公交IC卡刷卡数据作为样本来源,应用小波神经网络模型,以及传统的BP神经网络... 为预测更精确的客流量数据,达到公交出行的最佳效果。首先结合小波变换理论及BP神经网络的相关知识,建立一种基于小波神经网络的预测模型;其次选取某个城市的公交IC卡刷卡数据作为样本来源,应用小波神经网络模型,以及传统的BP神经网络模型对其进行预测与对比分析。结果发现小波神经网络预测模型预测精度、拟合度均有所提高,具备适用性。 展开更多
关键词 客流量 传统的BP神经网络模型 小波神经网络预测模型 预测
下载PDF
基于小波神经网络的船舶冷却水系统的传感器故障诊断 被引量:5
6
作者 孙娜 陶文华 李青芮 《测控技术》 CSCD 2008年第12期7-10,共4页
船舶冷却水系统是保证船舶动力装置安全可靠运行的系统之一,是故障诊断系统的重要组成部分,具有十分重要的工程意义。以船舶冷却水系统传感器故障检测问题为目标,提出了基于小波神经网络预测器的传感器故障诊断方法。该方法避免了神经... 船舶冷却水系统是保证船舶动力装置安全可靠运行的系统之一,是故障诊断系统的重要组成部分,具有十分重要的工程意义。以船舶冷却水系统传感器故障检测问题为目标,提出了基于小波神经网络预测器的传感器故障诊断方法。该方法避免了神经网络结构设计上的盲目性及训练过程易陷入局部最小等问题,同时采用同伦算法优化网络,解决小波神经网络对初始值敏感的问题。采集大连海事大学实验船的传感器数据,以温度传感器为例,对1℃偏差故障、0.03℃/s速率漂移故障及不同方差下的精度等级下降故障进行了仿真,结果表明同伦小波网络的诊断率高达95%。证明了该方法的有效性。 展开更多
关键词 船舶冷却水系统 传感器 故障诊断 小波神经网络预测 同伦算法
下载PDF
基于神经网络算法的钢水脱氧合金化元素收得率预测 被引量:1
7
作者 孙福玉 《科学技术创新》 2020年第8期13-14,共2页
首先对神经网络理论进行分析,建立了BP神经网络预测模型,利用MATLAB神经网络工具箱予以求解,求解结果显示预测效果不佳。经过改进算法后,利用小波优化BP神经网络,此优化后网络有较好的对波动数据的处理。小波神经网络结果显示预测准确率... 首先对神经网络理论进行分析,建立了BP神经网络预测模型,利用MATLAB神经网络工具箱予以求解,求解结果显示预测效果不佳。经过改进算法后,利用小波优化BP神经网络,此优化后网络有较好的对波动数据的处理。小波神经网络结果显示预测准确率在80%以上。讨论构建神经网络算法,以C、Mn两种元素作为例子对其收得率进行预测,并尽可能提高这两种元素收得率的预测准确率。 展开更多
关键词 BP神经网络预测 小波神经网络预测 结果
下载PDF
River channel flood forecasting method of coupling wavelet neural network with autoregressive model 被引量:1
8
作者 李致家 周轶 马振坤 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期90-94,共5页
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN.... Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness. 展开更多
关键词 river channel flood forecasting wavel'et neural network autoregressive model recursive least square( RLS) adaptive fading factor
下载PDF
Dynamic prediction of gas emission based on wavelet neural network toolbox 被引量:4
9
作者 Yu-Min PAN Yong-Hong DENG Quan-Zhu ZHANG Peng-Qian XUE 《Journal of Coal Science & Engineering(China)》 2013年第2期174-181,共8页
This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time... This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN. 展开更多
关键词 dynamic prediction gas emission wavelet neural network TOOLBOX prediction model
下载PDF
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
10
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 Wind speed forecast wavelet decomposition neural network Cuckoo search algorithm
下载PDF
Study on the non-linear forecast method for water inrush from coal seam floor based on wavelet neural network 被引量:2
11
作者 周荣义 刘爱群 李树清 《Journal of Coal Science & Engineering(China)》 2007年第1期44-48,共5页
Directing at the non-linear dynamic characteristics of water inrush from coal seam floor and by the analysis of the shortages of current forecast methods for water inrush from coal seam floor, a new forecast method wa... Directing at the non-linear dynamic characteristics of water inrush from coal seam floor and by the analysis of the shortages of current forecast methods for water inrush from coal seam floor, a new forecast method was raised based on wavelet neural network (WNN) that was a model combining wavelet function with artificial neural network. Firstly basic principle of WNN was described, then a forecast model for water inrush from coal seam floor based on WNN was established and analyzed, finally an example of forecasting the quantity of water inrush from coal floor was illustrated to verify the feasibility and superiority of this method. Conclusions show that the forecast result based on WNN is more precise and that using WNN model to forecast the quantity of water inrush from coal seam floor is feasible and practical. 展开更多
关键词 WAVELET neural network water inrush coal seam floor FORECAST
下载PDF
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
12
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
下载PDF
Analysis on Application of Wavelet Neural Network in Wind Electricity Power Prediction
13
作者 Huang Chunyi 《International Journal of Technology Management》 2014年第7期1-4,共4页
Wind electricity power has fluctuation, and accurate and reasonable wind electricity power prediction is very important for solving wind electricity network and combination. This paper takes an analysis of a lot of ac... Wind electricity power has fluctuation, and accurate and reasonable wind electricity power prediction is very important for solving wind electricity network and combination. This paper takes an analysis of a lot of actual data of a certain wind electricity field. Through wavelet neural network and time series method rolling, it can predict the overall power of wind electricity field. The result shows that for the original data of sampling time length and large sampling frequency, the model constructed by this paper has very good prediction effect. Because of the fan installation position, wind electricity fan flow effect and other random factor influence, wind electricity field overall power and single unit power distribution have difference. Through comparing with the time series parameters, it puts forward that single wind electricity unit power has smooth effect for overall power of wind electricity field. Finally, it summarizes the prediction effect and puts forward some reasonable suzestions for wind electricity network troblems. 展开更多
关键词 wavelet neural network time series smooth effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部