期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于自注意特征融合的钢材表面小目标缺陷检测 被引量:1
1
作者 冯夫健 罗太维 +2 位作者 谭棉 汪小梅 王岳继 《电子测量技术》 北大核心 2024年第19期172-180,共9页
针对钢材表面小目标缺陷占比小,对比度低,导致钢材表面小目标缺陷检测模型提取丰富缺陷特征失效的问题。基于联系上下文信息和增强特征融合之间的关系,对钢材表面小目标缺陷检测问题提出以下解决方案:首先,结合滑动窗口机制Swin Transfo... 针对钢材表面小目标缺陷占比小,对比度低,导致钢材表面小目标缺陷检测模型提取丰富缺陷特征失效的问题。基于联系上下文信息和增强特征融合之间的关系,对钢材表面小目标缺陷检测问题提出以下解决方案:首先,结合滑动窗口机制Swin Transformer,利用分层结构和局部窗口整合不同特征块的特征信息,以在降低卷积操作密集性的基础上增强小目标缺陷特征信息的对比度;其次,采用坐标注意力机制使模型获得更多的位置信息,以增强小目标缺陷特征信息的多样性;最后结合具有丰富梯度流信息的特征融合模块CSP-FCN,提出了基于自注意特征融合的钢材表面小目标缺陷检测模型SFNet,该模型将不同尺度特征融合以产生丰富的语义信息,增强钢材表面小目标缺陷的特征表达能力。实验结果表明,SFNet在NEU-DET和GC10-DET公开数据集上的检测性能优于目前经典的目标检测模型。此外,所提模型在参数量减少为原来1/2的基础上平均精度值分别提升了3%和3.7%。 展开更多
关键词 钢材表面缺陷 小目标缺陷检测 Swin Transformer 位置信息 特征融合
原文传递
基于改进YOLOv8的PCB板缺陷检测研究
2
作者 曹帅 秦襄培 彭梦旭 《计算机科学与应用》 2025年第2期209-219,共11页
印刷电路板(PCB)作为现代电子设备的核心组成部分,随着技术的进步,在多个领域得到了广泛的应用,包括消费电子、通信、医疗设备、汽车、工业控制等。针对PCB传统缺陷检测方法过程中的成本高、效率低、漏检率高,并且常见PCB缺陷微小,检测... 印刷电路板(PCB)作为现代电子设备的核心组成部分,随着技术的进步,在多个领域得到了广泛的应用,包括消费电子、通信、医疗设备、汽车、工业控制等。针对PCB传统缺陷检测方法过程中的成本高、效率低、漏检率高,并且常见PCB缺陷微小,检测精度低等问题,提出一种基于改进YOLOv8的深度学习检测方法。1) 引进ASF-YOLO网络,并且在此基础上添加小目标检测层;2) 在主干网络中加入SimAM注意力机制;3) 改进损失函数为Wise_CIoUv3。实验表明,改进后的模型的平均精度mAP达到90.4%,相比基线模型提高3.55%。另外,模型参数量下降17.19%,模型大小减少0.8 MB,实现了模型部分轻量化。为此领域提供了参考和应用价值。As a core component of modern electronic equipment, printed circuit board (PCB) has been widely used in many fields with the progress of technology, including consumer electronics, communications, medical equipment, automobiles, industrial control and so on. Aiming at the problems of high cost, low efficiency, high missed detection rate, small PCB defects and low detection accuracy in traditional PCB defect detection methods, a deep learning detection method based on improved YOLOv8 was proposed. 1) Introduce ASF-YOLO network, and add small target detection layer on this basis;2) Add the SimAM attention mechanism to the backbone network;3) Improve the loss function to Wise_CIoUv3. Experiments show that the average precision mAP of the improved model reaches 90.4%, which is 3.55% higher than that of the baseline model. In addition, the number of model parameters decreased by 17.19%, the size of the model decreased by 0.8 MB, and the initial lightweight of the model was realized. It provides reference and application value in this field. 展开更多
关键词 PCB缺陷检测 YOLOV8n 注意力机制 小目标缺陷检测 损失函数
下载PDF
基于改进YOLOv7-tiny的大尺寸导光板缺陷检测
3
作者 刘霞 王洪玎 +3 位作者 肖铭 龚烨飞 刘继承 李小伟 《化工自动化及仪表》 CAS 2024年第6期1001-1009,1034,共10页
针对导光板缺陷种类多、尺寸小、人工检测效率低的问题,提出一种基于改进YOLOv7-tiny的大尺寸导光板缺陷检测方法。首先,通过对导光板图像进行滑窗剪切以解决图像分辨率过大的问题;然后,对小样本缺陷使用多角度数据增强技术丰富数据量... 针对导光板缺陷种类多、尺寸小、人工检测效率低的问题,提出一种基于改进YOLOv7-tiny的大尺寸导光板缺陷检测方法。首先,通过对导光板图像进行滑窗剪切以解决图像分辨率过大的问题;然后,对小样本缺陷使用多角度数据增强技术丰富数据量以解决样本不均衡的问题;最后,将轻量级卷积注意力模块(CBAM)整合到YOLOv7-tiny主干特征提取部分,使模型在通道和空间上对小目标缺陷的特征提取能力得到增强;选取WIoUv2损失函数计算定位损失,增强网络对困难示例的关注度,提高算法对低质量锚框的检测能力。实验结果表明,所提方法的均值平均精度为85.8%、召回率为81.3%,与原始YOLOv7-tiny相比,分别提高了5.4%和8.1%。 展开更多
关键词 小目标缺陷检测 YOLOv7-tiny 多角度数据增强 特征提取 注意力机制 损失函数
下载PDF
基于改进YOLOv8n的PCB缺陷检测算法 被引量:1
4
作者 姜源 付波 +1 位作者 权轶 李昊 《国外电子测量技术》 2024年第6期22-32,共11页
针对现有的印刷电路板(PCB)缺陷检测方法计算量大、小目标缺陷易漏检、检测速度较慢等问题,提出YOLOv8n-4SCDP缺陷检测算法。首先,在YOLOv8n颈部网络增加上采样,融合Backbone中浅层语义信息,同时增加微小目标检测层降低PCB小目标缺陷漏... 针对现有的印刷电路板(PCB)缺陷检测方法计算量大、小目标缺陷易漏检、检测速度较慢等问题,提出YOLOv8n-4SCDP缺陷检测算法。首先,在YOLOv8n颈部网络增加上采样,融合Backbone中浅层语义信息,同时增加微小目标检测层降低PCB小目标缺陷漏检率;其次,在Backbone中融入坐标注意力(CA)机制,强化特征语义和位置信息,提高了模型特征融合能力;另外,设计密集连接机构,提高模型的缺陷特征利用率,采用PConv对模型进行压缩,既保证了模型的准确性,又大大减小了模型的尺寸;最后,针对难易样本不平衡的问题,采用线性区间映射法重新定义回归损失函数(Focaler-SIoU),提高模型收敛速度和回归精度。实验结果表明,YOLOv8n-4SCDP算法的整体缺陷的平均精度均值(mAP)达到95.8%,检测帧率达到了65fps。有效改善YOLOv8n对于PCB小目标缺陷漏检率高、检测精度低等问题。 展开更多
关键词 YOLOv8n PCB缺陷 小目标缺陷检测 密集连接 注意力机制
原文传递
基于轻量化深度学习网络的工业环境小目标缺陷检测 被引量:12
5
作者 叶卓勋 刘妹琴 张森林 《控制与决策》 EI CSCD 北大核心 2023年第5期1231-1238,共8页
工业环境下表面缺陷检测是质量管理的重要一环,具有重要的研究价值.通用检测网络(如YOLOv4)已被证实在多种数据集检测方面是有效的,但是在工业环境的缺陷检测仍需要解决两个问题:一是缺陷实例在表面占比过小,属于典型的小目标检测问题;... 工业环境下表面缺陷检测是质量管理的重要一环,具有重要的研究价值.通用检测网络(如YOLOv4)已被证实在多种数据集检测方面是有效的,但是在工业环境的缺陷检测仍需要解决两个问题:一是缺陷实例在表面占比过小,属于典型的小目标检测问题;二是通用检测网络结构复杂,很难部署在移动设备上.针对上述问题,提出一种基于轻量化深度学习网络的工业环境小目标缺陷检测方法.应用GhostNet替代YOLOv4主干特征提取网络,提高网络特征提取能力及降低算法复杂度,并通过改进式PANet结构增加YOLO预测头中高维特征图比例以实现更好的性能.以发动机金属表面缺陷检测为例进行实验分析,结果表明该模型在检测精度(mAP)提升5.83%的同时将网络模型参数量降低83.5%,检测速度提升2倍,同时满足缺陷检测的精度和实时性要求. 展开更多
关键词 轻量化检测网络 小目标缺陷检测 主干特征提取网络 改进式PANet
原文传递
YOLO-POD:基于多维注意力机制的高精度PCB微小缺陷检测算法
6
作者 郭艳 王智文 赵润星 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2515-2528,共14页
随着电子设备的广泛应用,印刷电路板(Printed Circuit Board,PCB)在电子制造行业中具有重要意义.然而,由于制造过程中的不完美和环境因素的干扰,PCB上可能存在微小的缺陷.因此,开发高效准确的缺陷检测算法对于确保产品质量至关重要.针对... 随着电子设备的广泛应用,印刷电路板(Printed Circuit Board,PCB)在电子制造行业中具有重要意义.然而,由于制造过程中的不完美和环境因素的干扰,PCB上可能存在微小的缺陷.因此,开发高效准确的缺陷检测算法对于确保产品质量至关重要.针对PCB微小缺陷检测问题,本文提出了一种基于多维注意力机制的高精度PCB微小缺陷检测算法.为降低网络的模型参数量和计算量,引入部分卷积(Partial Convolution,PConv),将ELAN(Efficient Layer Aggregation Network)模块设计为更加高效的P-ELAN,同时,为增强网络对微小缺陷的特征提取能力,引入多维注意力机制(Multi-Dimensional Attention Mechanism,MDAM)的全维动态卷积(Omni-dimensional Dynamic Convolution,ODConv)并结合部分卷积,设计了POD-CSP(Partial ODconv-Cross Stage Partial)和POD-MP(Partial ODconv-Max Pooling)跨阶段部分网络模块,提出了OD-Neck结构.最后,本文基于(Youo Only Look Once version 7,YOLOv7)提出了对小目标更加高效的YOLO-POD模型,并在训练阶段采用一种新颖的Alpha-SIoU损失函数对网络进行优化.实验结果表明,YOLO-POD的检测精确率和召回率分别达到了98.31%和97.09%,并在多个指标上取得了领先优势,尤其是对于更严格的(mean Average Precision at IoU threshold of 0.75,mAP75)指标,比原始的YOLOv7模型提高28%.验证了YOLO-POD在PCB缺陷检测性能中具有较高的准确性和鲁棒性,满足高精度的检测要求,可为PCB制造行业提供有效的检测解决方案. 展开更多
关键词 印刷电路板 小目标缺陷检测 POD-CSP POD-MP 全维动态卷积 多维注意力机制
下载PDF
基于改进YOLOv5的钢材表面缺陷检测
7
作者 刘祉燊 张晓玲 +2 位作者 刘珂宇 刘晓军 刘晓静 《兵工自动化》 北大核心 2024年第12期30-34,共5页
针对钢材表面缺陷检测中小目标缺陷检测效果不理想、特征提取不充分的问题,以YOLOv5算法为基础,提出一种YOLOv5s-ADW算法。将自注意力与卷积混合模块(a mixed model of self-attention and convolution,ACmix)融入主干网络层,增强模型... 针对钢材表面缺陷检测中小目标缺陷检测效果不理想、特征提取不充分的问题,以YOLOv5算法为基础,提出一种YOLOv5s-ADW算法。将自注意力与卷积混合模块(a mixed model of self-attention and convolution,ACmix)融入主干网络层,增强模型的特征敏感度;在特征融合层中加入可变形大内核注意力机制(deformable large kernel attention,D-LKA),增强模型对图像中不规则缺陷的捕捉能力;将原损失函数替换为Wise-IoU损失函数,降低数据集中低质量示例对模型检测效果的影响并提升小目标缺陷检测能力,在NEU-DET上进行实验验证。实验验证结果表明:YOLOv5s-ADW算法的平均精度均值(mean average precision,mAP)达到88.3%,相较原始模型提升了14.4%;小目标缺陷和漏检率高的缺陷平均精度(average precision,AP)也有较大提升,相比其他主流算法,能够更好解决上述问题。 展开更多
关键词 YOLOv5 钢材表面缺陷检测 小目标缺陷检测 特征提取
下载PDF
基于YOLOv8s的轻量级绝缘子多缺陷检测模型
8
作者 蓝贵文 任新月 +2 位作者 徐梓睿 郭瑞东 钟展 《现代电子技术》 北大核心 2024年第20期72-80,共9页
YOLO系列算法已广泛用于识别电力线路中的各类缺陷目标。由于巡检图像背景复杂、缺陷目标的尺度不一等,直接利用YOLO算法难以有效避免绝缘子闪络、破损等小目标的错检漏检问题。为解决这一问题,在YOLOv8s模型的基础上提出一种轻量化绝... YOLO系列算法已广泛用于识别电力线路中的各类缺陷目标。由于巡检图像背景复杂、缺陷目标的尺度不一等,直接利用YOLO算法难以有效避免绝缘子闪络、破损等小目标的错检漏检问题。为解决这一问题,在YOLOv8s模型的基础上提出一种轻量化绝缘子缺陷检测算法。在骨干网络中引入双层路由注意力机制(BRA),以提升对全局特征的关注度,抑制背景噪声,降低小目标缺陷的错检漏检率。通过加权双向特征金字塔网络(BiFPN)实现跨尺度特征之间的加权融合,获取各类缺陷更全面的特征信息。重构Neck网络来消除低贡献度的网络节点,在增强检测性能的同时减少了模型的参数量,实现了性能提升和参数效率之间的平衡。实验结果显示,改进后的网络模型平均检测精度达到84.9%,而参数量仅为8.4×10^(6),可实现对绝缘子缺陷的快速准确检测。 展开更多
关键词 轻量化网络 YOLOv8s 绝缘子缺陷 小目标缺陷检测 双层路由注意力机制 加权双向特征金字塔网络 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部