采用雷诺平均的Navier-Stokes方程,对接网格技术和TRIP(TRI sonic Platform)软件,数值模拟了CT-1标模大迎角静态气动特性。来流马赫数0.5,迎角0°~100°,侧滑角0°和5°,在与1.2 m跨声速风洞试验结果对比的基础上,...采用雷诺平均的Navier-Stokes方程,对接网格技术和TRIP(TRI sonic Platform)软件,数值模拟了CT-1标模大迎角静态气动特性。来流马赫数0.5,迎角0°~100°,侧滑角0°和5°,在与1.2 m跨声速风洞试验结果对比的基础上,重点讨论了对流项离散方法、湍流模型、远场距离和不同尾部处理形式对CT-1标模大迎角静态气动特性影响。研究结果表明,不同尾部处理形式对大迎角静态气动特性数值模拟结果影响显著,模拟试验的尾部支杆是对比大迎角静态测力试验结果与计算结果的基本要求。展开更多
文摘采用雷诺平均的Navier-Stokes方程,对接网格技术和TRIP(TRI sonic Platform)软件,数值模拟了CT-1标模大迎角静态气动特性。来流马赫数0.5,迎角0°~100°,侧滑角0°和5°,在与1.2 m跨声速风洞试验结果对比的基础上,重点讨论了对流项离散方法、湍流模型、远场距离和不同尾部处理形式对CT-1标模大迎角静态气动特性影响。研究结果表明,不同尾部处理形式对大迎角静态气动特性数值模拟结果影响显著,模拟试验的尾部支杆是对比大迎角静态测力试验结果与计算结果的基本要求。