红外小目标的检测一直是红外追踪系统的关键技术,针对现有红外小目标检测方法在复杂背景下易造成虚警、检测速度慢的不足,从人类视觉系统的角度出发,参考了多尺度局部能量因子检测方法(multiscale local contrast measure using a local...红外小目标的检测一直是红外追踪系统的关键技术,针对现有红外小目标检测方法在复杂背景下易造成虚警、检测速度慢的不足,从人类视觉系统的角度出发,参考了多尺度局部能量因子检测方法(multiscale local contrast measure using a local energy factor,MLCM-LEF),提出了一种基于双层局部能量因子的红外小目标检测方法.从局部能量差异与局部亮度差异两个角度进行目标检测,使用双层局部能量因子从能量角度描述小目标与背景的相异程度,同时采取加权亮度差因子从亮度角度对图像进行目标检测,通过二维高斯融合上述二者的处理结果,最终利用图像均值和标准差进行自适应阈值分割,提取红外小目标.经过公开数据集实验测试,该方法在抑制背景噪声、减低虚警概率的表现上比主流的检测方法有所提升,与MLCM-LEF算法相比,基于双层局部能量因子的方法将单帧检测时间降低至三分之一.展开更多
文摘红外小目标的检测一直是红外追踪系统的关键技术,针对现有红外小目标检测方法在复杂背景下易造成虚警、检测速度慢的不足,从人类视觉系统的角度出发,参考了多尺度局部能量因子检测方法(multiscale local contrast measure using a local energy factor,MLCM-LEF),提出了一种基于双层局部能量因子的红外小目标检测方法.从局部能量差异与局部亮度差异两个角度进行目标检测,使用双层局部能量因子从能量角度描述小目标与背景的相异程度,同时采取加权亮度差因子从亮度角度对图像进行目标检测,通过二维高斯融合上述二者的处理结果,最终利用图像均值和标准差进行自适应阈值分割,提取红外小目标.经过公开数据集实验测试,该方法在抑制背景噪声、减低虚警概率的表现上比主流的检测方法有所提升,与MLCM-LEF算法相比,基于双层局部能量因子的方法将单帧检测时间降低至三分之一.