同步定位和地图构建(simultaneous localization and mapping,SLAM)是移动机器人在未知环境中完成地图构建和定位任务的关键技术。针对多机器人SLAM中的地图融合问题,提出一种启发式的搜索方法引导局部地图的重复区域进行地图融合。每...同步定位和地图构建(simultaneous localization and mapping,SLAM)是移动机器人在未知环境中完成地图构建和定位任务的关键技术。针对多机器人SLAM中的地图融合问题,提出一种启发式的搜索方法引导局部地图的重复区域进行地图融合。每个机器人可以在不了解其相对位置的情况下建立局部地图,并将局部地图信息发送至同一工作站中,以局部地图的相似性为判断指标融合得到最优的全局地图。在机器人实物平台上进行验证,结果证明了多机器人SLAM的地图融合算法的有效性和准确性。展开更多
针对帧到帧模型里程计中特征点的冗余、耗费计算资源的问题,提出一种自适应特征提取与匹配的视觉里程计算法。对局部地图特征区域分块,在已有特征区域分块的基础上,基于稀疏化保留冗余特征区域中的高效特征点;针对特征区域中特征匹配点...针对帧到帧模型里程计中特征点的冗余、耗费计算资源的问题,提出一种自适应特征提取与匹配的视觉里程计算法。对局部地图特征区域分块,在已有特征区域分块的基础上,基于稀疏化保留冗余特征区域中的高效特征点;针对特征区域中特征匹配点不足的情形,从局部地图中补充方向性和尺度性良好的ORB(oriented FAST and rotated BRIEF)特征点,利用补充的特征点二次匹配;结合PnP(perspective-n-point)估计姿态,实现SLAM的前端视觉里程计。采用TUM(Technische Universit t München)通用数据集验证,并与其它算法在前端时间、特征点数量、轨迹绝对误差等方面对比,对比结果表明了改进算法在上述特征效果的优势。展开更多
提出一种改进的粒子滤波SLAM(simultaneous localization and map building)同时定位和地图创建实现方法。改进方法让机器人大约行进10步完成基于局部已创建地图下的粒子滤波定位后,再利用激光传感器探测环境并更新创建的地图;同时在利...提出一种改进的粒子滤波SLAM(simultaneous localization and map building)同时定位和地图创建实现方法。改进方法让机器人大约行进10步完成基于局部已创建地图下的粒子滤波定位后,再利用激光传感器探测环境并更新创建的地图;同时在利用粒子滤波定位时,使粒子只分布在由航位推算法得出的机器人位姿附近,从而可有效地减少粒子的数量。实验结果表明,与标准的粒子滤波SLAM算法比较,改进算法提高了机器人SLAM过程中定位和地图创建的精度和实时性,并为移动机器人在室外未知环境同时定位和地图创建提供了新方法。展开更多
针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算...针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算法。首先,对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;其次,通过曲率提取场景特征,并根据不同特征性质进行分类;再次,利用帧间匹配模块在滑动窗口内构建局部地图;最后,利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定。实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。展开更多
文摘同步定位和地图构建(simultaneous localization and mapping,SLAM)是移动机器人在未知环境中完成地图构建和定位任务的关键技术。针对多机器人SLAM中的地图融合问题,提出一种启发式的搜索方法引导局部地图的重复区域进行地图融合。每个机器人可以在不了解其相对位置的情况下建立局部地图,并将局部地图信息发送至同一工作站中,以局部地图的相似性为判断指标融合得到最优的全局地图。在机器人实物平台上进行验证,结果证明了多机器人SLAM的地图融合算法的有效性和准确性。
文摘针对帧到帧模型里程计中特征点的冗余、耗费计算资源的问题,提出一种自适应特征提取与匹配的视觉里程计算法。对局部地图特征区域分块,在已有特征区域分块的基础上,基于稀疏化保留冗余特征区域中的高效特征点;针对特征区域中特征匹配点不足的情形,从局部地图中补充方向性和尺度性良好的ORB(oriented FAST and rotated BRIEF)特征点,利用补充的特征点二次匹配;结合PnP(perspective-n-point)估计姿态,实现SLAM的前端视觉里程计。采用TUM(Technische Universit t München)通用数据集验证,并与其它算法在前端时间、特征点数量、轨迹绝对误差等方面对比,对比结果表明了改进算法在上述特征效果的优势。
文摘提出一种改进的粒子滤波SLAM(simultaneous localization and map building)同时定位和地图创建实现方法。改进方法让机器人大约行进10步完成基于局部已创建地图下的粒子滤波定位后,再利用激光传感器探测环境并更新创建的地图;同时在利用粒子滤波定位时,使粒子只分布在由航位推算法得出的机器人位姿附近,从而可有效地减少粒子的数量。实验结果表明,与标准的粒子滤波SLAM算法比较,改进算法提高了机器人SLAM过程中定位和地图创建的精度和实时性,并为移动机器人在室外未知环境同时定位和地图创建提供了新方法。
文摘针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算法。首先,对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;其次,通过曲率提取场景特征,并根据不同特征性质进行分类;再次,利用帧间匹配模块在滑动窗口内构建局部地图;最后,利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定。实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。