随着新能源技术的发展和普及,大量非线性用电设备接入电网对其电能质量产生了严重影响。为解决谐波扰动信号对电力系统带来的影响,提出将改进的局部均值分解LMD(local mean decomposition)和概率神经网络相结合,构造一种电压扰动分类器...随着新能源技术的发展和普及,大量非线性用电设备接入电网对其电能质量产生了严重影响。为解决谐波扰动信号对电力系统带来的影响,提出将改进的局部均值分解LMD(local mean decomposition)和概率神经网络相结合,构造一种电压扰动分类器,对电力系统中的电压扰动信号进行识别分类。通过构造三角波形自适应地延拓扰动信号的方法抑制LMD的端点效应,应用改进LMD算法对扰动信号进行3层分解,得到具有电压信号幅频信息的乘积函数PF(product function)分量,将由PF分量构造的信号能量作为概率神经网络的输入,以识别和分类电压干扰信号。通过建立训练模型对电压扰动信号进行仿真实验,结果表明,该方法可以准确识别电压扰动信号,有助于提高电力系统中电压扰动信号的识别精度。展开更多
局部均值分解(Local mean decomposition,LMD)方法是一种新的自适应时频分析方法,但在其实现过程中会发生模态混淆现象,使分析结果失真。通过数值试验得到了LMD对白噪声的滤波器组结构,并在此基础上,针对模态混淆现象提出总体局部均值分...局部均值分解(Local mean decomposition,LMD)方法是一种新的自适应时频分析方法,但在其实现过程中会发生模态混淆现象,使分析结果失真。通过数值试验得到了LMD对白噪声的滤波器组结构,并在此基础上,针对模态混淆现象提出总体局部均值分解(Ensemble local mean decomposition,ELMD)方法。在该方法中添加不同的白噪声到目标信号,分别对加噪后的信号进行LMD分解,最后将多次分解结果的平均值作为最终的分解结果。对仿真信号和试验转子局部碰摩信号进行分析,结果表明ELMD方法能有效地克服原LMD方法的模态混淆现象。展开更多
为了提高建筑物变形监测中的预测精度,降低噪声对变形预测的影响,本文在局部均值分解(Local Mean Decomposition,LMD)方法的基础上,引入小波阈值去噪方法,提出一种新的LMD-小波阈值去噪方法。该方法实现信号去噪,步骤为:首先是通过LMD...为了提高建筑物变形监测中的预测精度,降低噪声对变形预测的影响,本文在局部均值分解(Local Mean Decomposition,LMD)方法的基础上,引入小波阈值去噪方法,提出一种新的LMD-小波阈值去噪方法。该方法实现信号去噪,步骤为:首先是通过LMD将信号分解为若干个乘积函数(Product Function,PF)以及余量,通过消除趋势波动分析方法计算H指数的方式得到PF分量中高频噪声分量与低频有用信号分量;其次是通过小波阈值去噪方法对高频分量进行进一步降噪,得到有用信息,并重构降噪后信号、低频分量以及余量得到降噪后信号;最后建立RBF神经网络模型对降噪后数据进行建模与预测。使用建筑物监测数据对本文提出方法进行验证,结果表明:本文方法较LMD方法、经验模态分解(Empirical Mode Decomposition,EMD)方法的降噪效果更好,降噪后数据预测精度更高,可在工程类监测项目中进一步应用。展开更多
研究了一种新的自适应时频分析方法——局部均值分解LMD(Local mean decomposition)方法,并针对齿轮故障振动信号的调制特征,提出了基于LMD的齿轮故障诊断方法。LMD方法可以自适应地将任何一个复杂信号分解为若干个瞬时频率具有物理意义...研究了一种新的自适应时频分析方法——局部均值分解LMD(Local mean decomposition)方法,并针对齿轮故障振动信号的调制特征,提出了基于LMD的齿轮故障诊断方法。LMD方法可以自适应地将任何一个复杂信号分解为若干个瞬时频率具有物理意义的PF(Product function)分量之和,从而获得原始信号完整的时频分布,其本质上是将多分量的信号自适应地分解为若干个单分量的调幅-调频信号之和,非常适合于处理多分量的调幅-调频信号。在介绍LMD方法的基础上,对LMD和EMD(Empirical mode decomposition)方法进行了对比,结果表明了LMD方法的优越性,同时将LMD方法应用于齿轮故障诊断,对实际的齿轮故障振动信号进行了分析,结果表明LMD方法可以有效地应用于齿轮故障诊断。展开更多
局部均值分解(Local Mean Decomposition,简称LMD)作为一种新的自适应的时频分析方法,在故障诊断领域开始得到研究。利用仿真信号研究了LMD算法的特性,验证了LMD处理描述齿轮故障信号特征的多分量调幅调频信号的有效性;在此基础上将LMD...局部均值分解(Local Mean Decomposition,简称LMD)作为一种新的自适应的时频分析方法,在故障诊断领域开始得到研究。利用仿真信号研究了LMD算法的特性,验证了LMD处理描述齿轮故障信号特征的多分量调幅调频信号的有效性;在此基础上将LMD综合应用于断齿、磨损和剥落三种齿轮故障诊断中,并与传统解调方法进行了对比。结果表明,LMD方法可以有效提取故障齿轮的故障特征,消除虚假成分的影响,从而提高了齿轮故障诊断的准确性。展开更多
针对齿轮故障振动信号的非平稳特性,将局部均值分解(Local mean decomposition,LMD)引入齿轮故障诊断,提出了基于LMD的循环频率和能量谱概念,并根据齿轮故障振动信号的特点建立了两种齿轮故障诊断方法:基于LMD的循环频率方法和局部能量...针对齿轮故障振动信号的非平稳特性,将局部均值分解(Local mean decomposition,LMD)引入齿轮故障诊断,提出了基于LMD的循环频率和能量谱概念,并根据齿轮故障振动信号的特点建立了两种齿轮故障诊断方法:基于LMD的循环频率方法和局部能量谱方法。采用LMD方法能将齿轮振动信号自适应地分解为若干个单分量信号,而循环频率和能量谱则分别反映了齿轮振动信号的相位调制信息以及信号能量在时频面上的分布情况,从而可以提取出齿轮振动信号的故障特征。将这两种方法应用于实际齿轮箱的故障诊断中,结果表明两种方法都能有效地提取齿轮故障特征信息。展开更多
将局部均值分解LMD(Local Mean Decomposition)法应用于电能质量扰动检测,选取电力系统中典型间谐波扰动信号、短时谐波信号、暂态谐波信号、时变谐波信号和变压器中的实际多频谐波信号,应用LMD对其进行分析。间谐波信号的仿真结果表明...将局部均值分解LMD(Local Mean Decomposition)法应用于电能质量扰动检测,选取电力系统中典型间谐波扰动信号、短时谐波信号、暂态谐波信号、时变谐波信号和变压器中的实际多频谐波信号,应用LMD对其进行分析。间谐波信号的仿真结果表明LMD方法在求取的瞬时特征参数波动幅度、端部效果、检测精度和运行时间方面都优于Hilbert-Huang变换(HHT)方法;谐波失真信号的仿真结果表明该方法可以准确检测扰动信号的频率、幅值以及扰动发生与恢复的时刻。对某500 kV变电站35 kV侧投运电容器时引起的35 kV侧B相电压下降和畸变的信号分析结果进一步证明了所提方法的正确性。展开更多
局部均值分解(Local mean decomposition,简称LMD)方法通过滑动平均方法平滑局部均值线段和局部幅值线段得到局部均值函数和包络估计函数,从而实现信号的分解。但滑动平均方法会产生相位差以及平滑步长的选择具有一定的主观性,这样会使...局部均值分解(Local mean decomposition,简称LMD)方法通过滑动平均方法平滑局部均值线段和局部幅值线段得到局部均值函数和包络估计函数,从而实现信号的分解。但滑动平均方法会产生相位差以及平滑步长的选择具有一定的主观性,这样会使分解结果不理想。对LMD方法进行了改进,采用有理样条插值函数(Rationalspline)求取信号的上下包络线,然后通过上下包络线计算信号的局部均值函数和包络估计函数,克服了原LMD方法中采用滑动平均方法带来的缺陷。通过对仿真信号以及滚动轴承故障振动信号的分析,表明改进后的LMD方法优于原LMD方法。展开更多
为更全面提取转子故障特征,将全矢谱和复局部均值分解(Complex local mean decomposition,CLMD)相结合,提出二元的全矢包络技术——CLMD全矢包络技术。采用正交采样技术获取转子同一截面上互相垂直方向上的振动信号,并将其组成一个复数...为更全面提取转子故障特征,将全矢谱和复局部均值分解(Complex local mean decomposition,CLMD)相结合,提出二元的全矢包络技术——CLMD全矢包络技术。采用正交采样技术获取转子同一截面上互相垂直方向上的振动信号,并将其组成一个复数信号;运用CLMD将复数信号按能量从高到低的顺序依次分离出系列复乘积函数(Complex product function,CPF),并解调出CPF的复包络;由于故障特征主要在能量较高的CPF分量中,通过全矢谱技术融合前几阶CPF分量的包络信号,得到相应的全矢包络谱。仿真的调幅-调频信号分析结果表面,较之Hilbert解调,CLMD全矢包络技术可提取隐含的调频信息,而且不存在虚假的低频谱线。转子试验台模拟的基座松动信号、碰摩信号分析结果表明,较之单源信息的包络谱,CLMD全矢包络技术提取的谱线特征更清晰、全面,而且根据全矢包络谱可有效区分基座松动引起的碰摩和单一碰摩故障。展开更多
针对电力系统低频振荡非线性时变的特点,提出了一种基于改进局部均值分解(local mean decomposition,LMD)的电力系统低频振荡信号分析方法。利用改进的局部均值分解,电力系统中的单一多模态测量信号可以分解为一组乘积函数(product func...针对电力系统低频振荡非线性时变的特点,提出了一种基于改进局部均值分解(local mean decomposition,LMD)的电力系统低频振荡信号分析方法。利用改进的局部均值分解,电力系统中的单一多模态测量信号可以分解为一组乘积函数(product function,PF)分量的和。每个PF分量可以表示为一个调幅(amplitude modulated,AM)信号和一个调频(frequency modulated,FM)信号的乘积。其中,AM信号可以近似当作相应振荡模态的瞬时幅值,并由此计算阻尼信息;FM信号可以通过直接正交和插值相结合的综合方法,计算PF的瞬时频率。数值仿真和实际测量信号的计算结果证明了所提方法的有效性和可行性。展开更多
文摘随着新能源技术的发展和普及,大量非线性用电设备接入电网对其电能质量产生了严重影响。为解决谐波扰动信号对电力系统带来的影响,提出将改进的局部均值分解LMD(local mean decomposition)和概率神经网络相结合,构造一种电压扰动分类器,对电力系统中的电压扰动信号进行识别分类。通过构造三角波形自适应地延拓扰动信号的方法抑制LMD的端点效应,应用改进LMD算法对扰动信号进行3层分解,得到具有电压信号幅频信息的乘积函数PF(product function)分量,将由PF分量构造的信号能量作为概率神经网络的输入,以识别和分类电压干扰信号。通过建立训练模型对电压扰动信号进行仿真实验,结果表明,该方法可以准确识别电压扰动信号,有助于提高电力系统中电压扰动信号的识别精度。
文摘局部均值分解(Local mean decomposition,LMD)方法是一种新的自适应时频分析方法,但在其实现过程中会发生模态混淆现象,使分析结果失真。通过数值试验得到了LMD对白噪声的滤波器组结构,并在此基础上,针对模态混淆现象提出总体局部均值分解(Ensemble local mean decomposition,ELMD)方法。在该方法中添加不同的白噪声到目标信号,分别对加噪后的信号进行LMD分解,最后将多次分解结果的平均值作为最终的分解结果。对仿真信号和试验转子局部碰摩信号进行分析,结果表明ELMD方法能有效地克服原LMD方法的模态混淆现象。
文摘局部均值分解(Local Mean Decomposition,简称LMD)作为一种新的自适应的时频分析方法,在故障诊断领域开始得到研究。利用仿真信号研究了LMD算法的特性,验证了LMD处理描述齿轮故障信号特征的多分量调幅调频信号的有效性;在此基础上将LMD综合应用于断齿、磨损和剥落三种齿轮故障诊断中,并与传统解调方法进行了对比。结果表明,LMD方法可以有效提取故障齿轮的故障特征,消除虚假成分的影响,从而提高了齿轮故障诊断的准确性。
文摘针对齿轮故障振动信号的非平稳特性,将局部均值分解(Local mean decomposition,LMD)引入齿轮故障诊断,提出了基于LMD的循环频率和能量谱概念,并根据齿轮故障振动信号的特点建立了两种齿轮故障诊断方法:基于LMD的循环频率方法和局部能量谱方法。采用LMD方法能将齿轮振动信号自适应地分解为若干个单分量信号,而循环频率和能量谱则分别反映了齿轮振动信号的相位调制信息以及信号能量在时频面上的分布情况,从而可以提取出齿轮振动信号的故障特征。将这两种方法应用于实际齿轮箱的故障诊断中,结果表明两种方法都能有效地提取齿轮故障特征信息。
文摘局部均值分解(Local mean decomposition,简称LMD)方法通过滑动平均方法平滑局部均值线段和局部幅值线段得到局部均值函数和包络估计函数,从而实现信号的分解。但滑动平均方法会产生相位差以及平滑步长的选择具有一定的主观性,这样会使分解结果不理想。对LMD方法进行了改进,采用有理样条插值函数(Rationalspline)求取信号的上下包络线,然后通过上下包络线计算信号的局部均值函数和包络估计函数,克服了原LMD方法中采用滑动平均方法带来的缺陷。通过对仿真信号以及滚动轴承故障振动信号的分析,表明改进后的LMD方法优于原LMD方法。
文摘为更全面提取转子故障特征,将全矢谱和复局部均值分解(Complex local mean decomposition,CLMD)相结合,提出二元的全矢包络技术——CLMD全矢包络技术。采用正交采样技术获取转子同一截面上互相垂直方向上的振动信号,并将其组成一个复数信号;运用CLMD将复数信号按能量从高到低的顺序依次分离出系列复乘积函数(Complex product function,CPF),并解调出CPF的复包络;由于故障特征主要在能量较高的CPF分量中,通过全矢谱技术融合前几阶CPF分量的包络信号,得到相应的全矢包络谱。仿真的调幅-调频信号分析结果表面,较之Hilbert解调,CLMD全矢包络技术可提取隐含的调频信息,而且不存在虚假的低频谱线。转子试验台模拟的基座松动信号、碰摩信号分析结果表明,较之单源信息的包络谱,CLMD全矢包络技术提取的谱线特征更清晰、全面,而且根据全矢包络谱可有效区分基座松动引起的碰摩和单一碰摩故障。