期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
一种基于局部学习的自然图像景物提取方法 被引量:9
1
作者 彭宏京 陈松灿 张道强 《软件学报》 EI CSCD 北大核心 2009年第4期834-844,共11页
引入一种按邻点对的相似性权值计算次数来归类Laplacian的思想,并从理论上证明了包含多次相似性权值计算的Laplacian构造比只计算一次或两次相似性权值的Laplacian构造更能精细地刻画数据局部几何结构.据此提出了一种新的更能胜任自然... 引入一种按邻点对的相似性权值计算次数来归类Laplacian的思想,并从理论上证明了包含多次相似性权值计算的Laplacian构造比只计算一次或两次相似性权值的Laplacian构造更能精细地刻画数据局部几何结构.据此提出了一种新的更能胜任自然图像景物提取任务的Laplacian构造方法.该方法通过任意一对相邻像素在不同局部邻域内建立一个线性学习模型来重构不同的相似性权值.结合用户提供的部分前、背景标记约束,导出求解景物提取的半监督二次优化目标函数.当考虑通过对前、背景抽样来估计未知像素的颜色值时,优化目标可以迭代求解.更有意义的是,该迭代方法可以成功地将原来构造的其他Laplacian推广应用于只提供稀疏指示条带的景物提取问题中.理论分析与实验结果均证实,所构造的Laplacian能够更充分地表达图像像素间的内在结构,能以更精细的方式约束传播前、背景的成分比例而不仅仅是标号,从而获得更优的景物提取效果. 展开更多
关键词 景物提取 半监督学习 局部学习 拉普拉斯正则化 二次优化
下载PDF
基于局部学习机和细菌群体趋药性算法的电力系统暂态稳定评估 被引量:25
2
作者 顾雪平 李扬 吴献吉 《电工技术学报》 EI CSCD 北大核心 2013年第10期271-279,共9页
为了提高电力系统暂态稳定评估的分类正确率,提出一种基于局部学习机(LLM)和改进的细菌群体趋势药性(BCC)算法的暂态稳定评估方法。该方法采用LLM构建暂态稳定评估模型,考虑相量测量单元可以提供的故障后实测信息,构造了一组系统特征作... 为了提高电力系统暂态稳定评估的分类正确率,提出一种基于局部学习机(LLM)和改进的细菌群体趋势药性(BCC)算法的暂态稳定评估方法。该方法采用LLM构建暂态稳定评估模型,考虑相量测量单元可以提供的故障后实测信息,构造了一组系统特征作为LLM模型的输入量,稳定结果作为输出量,对稳定结果和系统特征间的映射关系进行训练,并通过综合混沌搜索策略的改进BCC算法优化LLM模型的参数。最后,以新英格兰10机39节点系统为例证明了所提方法的有效性。 展开更多
关键词 暂态稳定评估 局部学习 细菌群体趋药性 混沌搜索 相量测量单元
下载PDF
基于局部学习的车辆图像识别方法 被引量:6
3
作者 赵小敏 孙志刚 夏明 《浙江工业大学学报》 CAS 北大核心 2017年第4期439-444,共6页
随着机动车交通违法行为的增多,民众利用智能手机拍照举报式的监督模式应运而生.针对由手机拍照举报的静态图像的车辆识别问题,提出一种基于局部学习的车辆识别方法.与在整个样本空间里训练一个全局模型的传统方法不同,该方法以局部学... 随着机动车交通违法行为的增多,民众利用智能手机拍照举报式的监督模式应运而生.针对由手机拍照举报的静态图像的车辆识别问题,提出一种基于局部学习的车辆识别方法.与在整个样本空间里训练一个全局模型的传统方法不同,该方法以局部学习中心选取策略和巴氏距离大小为基础,将样本划分若干子集并在每个子集上训练一个局部分类器.仿真结果表明:与已有形状模型法、超像素级别等图像目标识别方法相比,该方法在静态车辆图像识别的问题上拥有更好的识别率和识别效果. 展开更多
关键词 局部学习 超像素 目标识别 车辆识别
下载PDF
分布式网络局部学习方法及其在推断控制中的应用 被引量:12
4
作者 罗荣富 邵惠鹤 《自动化学报》 EI CSCD 北大核心 1994年第6期739-742,共4页
本文提出了分布式网络局部学习方法,并采用趋化性神经网络设计了一个非线性推断估计器,对某大型气体分馏装置的丙烯丙烷精密精馏塔进行了推断控制,取得了令人满意的结果.
关键词 网络局部学习 神经网络 推断控制
下载PDF
BP网络局部学习速率自适应SA算法的改进 被引量:2
5
作者 李波 李赣华 +2 位作者 王成友 蔡宣平 张尔扬 《信号处理》 CSCD 北大核心 2005年第6期615-620,596,共7页
Silva-Almeida(SA)算法是最好的局部学习速率自适应算法之一,在对SA算法进行研究分析的基础上,提出 两项改进措施,使改进后的SA算法较原SA算法震荡现象大大减弱,训练速率有较大加快,训练精度有较大提高。在仿 真实验中,改进的SA算法在... Silva-Almeida(SA)算法是最好的局部学习速率自适应算法之一,在对SA算法进行研究分析的基础上,提出 两项改进措施,使改进后的SA算法较原SA算法震荡现象大大减弱,训练速率有较大加快,训练精度有较大提高。在仿 真实验中,改进的SA算法在一定程度上优于RPROP算法。 展开更多
关键词 局部学习速率自适应 全局学习速率自适应 批训练算法 梯度下降 BP神经网络
下载PDF
基于局部学习的半监督多标记分类算法 被引量:1
6
作者 吕佳 《计算机应用》 CSCD 北大核心 2012年第12期3308-3310,3338,共4页
针对在求解半监督多标记分类问题时通常将其分解成若干个单标记半监督二类分类问题从而导致忽视类别之间内在联系的问题,提出基于局部学习的半监督多标记分类方法。该方法避开了多个单标记半监督二类分类问题的求解,采用"整体法&qu... 针对在求解半监督多标记分类问题时通常将其分解成若干个单标记半监督二类分类问题从而导致忽视类别之间内在联系的问题,提出基于局部学习的半监督多标记分类方法。该方法避开了多个单标记半监督二类分类问题的求解,采用"整体法"的研究思路,利用基于图的方法,引入基于样本的局部学习正则项和基于类别的拉普拉斯正则项,构建了问题的正则化框架。实验结果表明,所提算法具有较高的查全率和查准率。 展开更多
关键词 半监督学习 多标记分类问题 局部学习 标记 正则项
下载PDF
群体环境下基于随机对策的多Agent局部学习算法
7
作者 尹怡欣 江道平 +1 位作者 班晓娟 孟祥嵩 《信息与控制》 CSCD 北大核心 2008年第6期703-708,共6页
基于群体环境中个体agent局部感知和交互的生物原型,提出一种随机对策框架下的多agent局部学习算法.算法在与局部环境交互中采用贪婪策略最大化自身利益.分别在零和、一般和的单个平衡点和多个平衡点情形下改进了Nash-Q学习算法;提出了... 基于群体环境中个体agent局部感知和交互的生物原型,提出一种随机对策框架下的多agent局部学习算法.算法在与局部环境交互中采用贪婪策略最大化自身利益.分别在零和、一般和的单个平衡点和多个平衡点情形下改进了Nash-Q学习算法;提出了行为修正方法,并证明了算法收敛、计算复杂度降低. 展开更多
关键词 多AGENT学习 随机对策 Nash—Q 局部学习
下载PDF
基于局部学习和多目标优化的选择性异质集成超短期风电功率预测方法 被引量:10
8
作者 石立贤 金怀平 +2 位作者 杨彪 钱斌 金怀康 《电网技术》 EI CSCD 北大核心 2022年第2期568-577,共10页
风能的间歇性、波动性和随机性会对电网造成巨大冲击,准确的风电功率预测对于制定发电计划和统筹调度至关重要,因此提出一种基于进化多目标优化的选择性异质集成(evolutionary multi-objective optimization based selection heterogene... 风能的间歇性、波动性和随机性会对电网造成巨大冲击,准确的风电功率预测对于制定发电计划和统筹调度至关重要,因此提出一种基于进化多目标优化的选择性异质集成(evolutionary multi-objective optimization based selection heterogeneous ensemble,EMOSHeE)风电功率预测方法。首先,结合K近邻和K均值聚类的优势构建多样性局部区域并通过概率分析剔除冗余状态,从而获得涵盖不同波动状态下的样本子集。其次,在每个局部区域上利用偏最小二乘、支持向量回归和高斯过程回归3种方法分别建立预测模型,得到一个具有较高多样性的异质模型库。随后,利用进化多目标优化算法对异质模型库进行集成修剪,从而获得一组较小规模、多样且高性能的异质模型集。最后,引入简单平均策略实现修剪后的异质模型集的融合并获得最终的预测结果。利用云南省和国外某风电场的真实数据验证了所提方法的有效性。 展开更多
关键词 风电功率预测 集成学习 局部学习 集成修剪 进化多目标优化 异质集成
原文传递
具备反向学习和局部学习能力的磷虾群算法 被引量:5
9
作者 肖素琼 罗可 《计算机工程与应用》 CSCD 北大核心 2018年第18期34-39,共6页
针对磷虾群算法易陷入局部最优、收敛速度慢等缺点,提出了具备反向学习和局部学习能力的磷虾群算法。利用混沌映射和反向学习的思想初始化种群,根据算法迭代次数自适应调整学习维度,对精英个体进行反向学习,能有效保持种群的多样性,选... 针对磷虾群算法易陷入局部最优、收敛速度慢等缺点,提出了具备反向学习和局部学习能力的磷虾群算法。利用混沌映射和反向学习的思想初始化种群,根据算法迭代次数自适应调整学习维度,对精英个体进行反向学习,能有效保持种群的多样性,选取精英群体,通过自适应的Lévy飞行分布和改进的差分变异算子,提高种群的局部学习能力。这种新颖的元启发方式能加速收敛速度的同时可以保证磷虾群算法的鲁棒性。通过对8个基准函数进行仿真测试,实验结果表明:与最近的KH优化算法相比,该算法在收敛速度、收敛精度等方面得到明显改进。 展开更多
关键词 磷虾群优化算法 种群初始化 精英反向学习 差分变异算子 局部学习
下载PDF
采用局部学习与反向学习机制的人工鱼群算法在含DG配电网重构中的应用 被引量:5
10
作者 许喆 刘秀杰 +3 位作者 宋健 潘金生 翟爽 公茂法 《电测与仪表》 北大核心 2018年第12期60-65,共6页
配电网重构是配电网络结构优化的有效手段。考虑到系统运行的经济性,建立了以网络损耗最小为目标函数的数学模型,采用一种具有高效并行优化能力的人工鱼群算法来求解含DG的配电网重构问题。为了克服二进制编码所带来的"维数灾"... 配电网重构是配电网络结构优化的有效手段。考虑到系统运行的经济性,建立了以网络损耗最小为目标函数的数学模型,采用一种具有高效并行优化能力的人工鱼群算法来求解含DG的配电网重构问题。为了克服二进制编码所带来的"维数灾"问题,提出了三大网络简化原则以提高算法的计算效率。当算法陷入"早熟收敛"的怪圈时,引入局部学习与反向学习机制,一部分鱼群根据处于最优位置鱼群之间的差分结果进行动态调节,协同最优种群强化局部搜索;另一部分鱼群则沿最差位置方向进行反向学习,及时逃离局部最优区域,有效地改善了种群的多样性。为了进一步加快算法的寻优效率,在视野与步长参数方面做出了相应的自适应调整。通过算例分析,验证了文中算法的准确性与有效性。 展开更多
关键词 DG 配电网重构 局部学习 反向学习 人工鱼群算法 拓扑简化
下载PDF
基于局部学习的遥感图像融合
11
作者 高东生 王颖 《自动化博览》 2014年第1期86-90,共5页
本文提出了一种基于局部学习的遥感图像融合方法。其基本思想是在局部区域对融合图像与全色图像建立对应的局部线性关系。由于图像数据在局部区域相对简单,因此局部模型相比全局模型更为合理。在局部学习的基础上,将全色图像与融合图像... 本文提出了一种基于局部学习的遥感图像融合方法。其基本思想是在局部区域对融合图像与全色图像建立对应的局部线性关系。由于图像数据在局部区域相对简单,因此局部模型相比全局模型更为合理。在局部学习的基础上,将全色图像与融合图像的全局回归误差表示为图拉普拉斯的形式,其本质是利用局部学习使得融合图像保持全色图像的流形结构。同时为了保持多光谱图像的性质,通过图像的尺度空间表示,建立融合图像与多光谱图像之间的尺度关系。最后通过集成融合图像的二次拉普拉斯形式和尺度空间表示,构建图像融合的全局目标函数。为了优化目标函数,本文提出了闭合求解法和快速迭代求解法。实验结果表明:本文所提出的融合方法比传统融合方法具有更好的效果。 展开更多
关键词 局部学习 遥感图像融合
下载PDF
多层非线性局部感受野极限学习机方法用于录井气体分析
12
作者 李忠兵 袁章雨 +2 位作者 梁海波 谌贵辉 蒋川东 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第3期157-169,共13页
随着我国能源需求的不断提升以及钻探环境的日益复杂化,开展高精度的烷烃类气体浓度检测对于提高油气勘探效率具有重要意义。光谱录井技术具有烃类气体检测快速、准确等优势,已成为石油勘探过程中备受关注的研究热点。针对录井气体红外... 随着我国能源需求的不断提升以及钻探环境的日益复杂化,开展高精度的烷烃类气体浓度检测对于提高油气勘探效率具有重要意义。光谱录井技术具有烃类气体检测快速、准确等优势,已成为石油勘探过程中备受关注的研究热点。针对录井气体红外光谱由于饱和吸收、噪声干扰、基线漂移等方面引起的非线性问题,提出了多层非线性局部感受野极限学习机(NM-LRF-ELM)模型。该模型将一维光谱数据转换为二维矩阵格式,利用局部感受野的数据处理方式在输入与隐藏层之间实现非线性特征提取。同时,引入改进的T-sigmoid激活函数,并在全连接层后加入dropout层来降低模型的过拟合风险。模型的特征提取与定量分析呈一体化结构,直接输出定量分析预测值。采集了两组共407个混合烷烃气体样本的红外光谱作为实验数据集,进行定量分析实验。实验结果表明,相较于滑动窗口类与灰狼优化定量分析模型,该模型的训练时间显著减少了90%以上。即使在同系物的非线性干扰下,模型的预测精度仍低于系统误差。因此,提出的方法有助于在现场环境变化复杂的情况下,降低未知气体的非线性干扰,提高对目标气体的红外光谱检测精度。 展开更多
关键词 气测录井 红外光谱 定量分析 局部感受野极限学习
原文传递
融合局部结构学习的大规模子空间聚类算法 被引量:1
13
作者 任奇泽 贾洪杰 陈东宇 《计算机应用》 CSCD 北大核心 2023年第12期3747-3754,共8页
常规的大规模子空间聚类算法在计算锚点亲和矩阵时忽略了数据之间普遍存在的局部结构,且在计算拉普拉斯(Laplacian)矩阵的近似特征向量时存在较大误差,不利于数据聚类。针对上述问题,提出一种融合局部结构学习的大规模子空间聚类算法(LL... 常规的大规模子空间聚类算法在计算锚点亲和矩阵时忽略了数据之间普遍存在的局部结构,且在计算拉普拉斯(Laplacian)矩阵的近似特征向量时存在较大误差,不利于数据聚类。针对上述问题,提出一种融合局部结构学习的大规模子空间聚类算法(LLSC)。所提算法将局部结构学习嵌入锚点亲和矩阵的学习,从而能够综合利用全局和局部信息挖掘数据的子空间结构;此外,受非负矩阵分解(NMF)的启发,设计一种迭代优化方法以简化锚点亲和矩阵的求解过程;其次,根据Nystr?m近似方法建立锚点亲和矩阵与Laplacian矩阵的数学联系,并改进Laplacian矩阵特征向量的计算方法以提升聚类性能。相较于LMVSC(Large-scale Multi-View Subspace Clustering)、SLSR(Scalable Least Square Regression)、LSC-k(Landmark-based Spectral Clustering using k-means)和k-FSC(k-Factorization Subspace Clustering),LLSC在4个广泛使用的大规模数据集上显示出明显的提升,其中,在Pokerhand数据集上,LLSC的准确率比k-FSC高28.18个百分点,验证了LLSC的有效性。 展开更多
关键词 子空间聚类 局部结构学习 非负矩阵分解 大规模聚类 低秩近似
下载PDF
民族服装图像描述生成的局部属性注意网络
14
作者 张绪辉 刘骊 +2 位作者 付晓东 刘利军 彭玮 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第3期399-412,共14页
针对民族服装图像属性信息复杂、类间相似度高且语义属性与视觉信息关联性低,导致图像描述生成结果不准确的问题,提出民族服装图像描述生成的局部属性注意网络.首先构建包含55个类别、30000幅图像,约3600 MB的民族服装图像描述生成数据... 针对民族服装图像属性信息复杂、类间相似度高且语义属性与视觉信息关联性低,导致图像描述生成结果不准确的问题,提出民族服装图像描述生成的局部属性注意网络.首先构建包含55个类别、30000幅图像,约3600 MB的民族服装图像描述生成数据集;然后定义民族服装208种局部关键属性词汇和30089条文本信息,通过局部属性学习模块进行视觉特征提取和文本信息嵌入,并采用多实例学习得到局部属性;最后基于双层长短期记忆网络定义包含语义、视觉、门控注意力的注意力感知模块,将局部属性、基于属性的视觉特征和文本编码信息进行融合,优化得到民族服装图像描述生成结果.在构建的民族服装描述生成数据集上的实验结果表明,所提出的网络能够生成包含民族类别、服装风格等关键属性的图像描述,较已有方法在精确性指标BLEU和语义丰富程度指标CIDEr上分别提升1.4%和2.2%. 展开更多
关键词 民族服装图像 图像描述生成 文本信息嵌入 局部属性学习 注意力感知
下载PDF
跨视图时序对比学习的自监督视频表征算法
15
作者 王露露 徐增敏 +2 位作者 张雪莲 蒙儒省 卢涛 《计算机工程与应用》 CSCD 北大核心 2024年第18期158-166,共9页
现有的自监督表征算法主要关注视频帧之间的短期运动特性,但是帧间动作序列的变化幅度较小,而且单视图数据因语义受限影响深度特征表达能力,视频动作中丰富的多视图信息未被充分利用。为此提出基于跨视图语义一致性的时序对比学习算法,... 现有的自监督表征算法主要关注视频帧之间的短期运动特性,但是帧间动作序列的变化幅度较小,而且单视图数据因语义受限影响深度特征表达能力,视频动作中丰富的多视图信息未被充分利用。为此提出基于跨视图语义一致性的时序对比学习算法,自监督学习RGB帧和光流场两种数据中蕴含的动作时序变化特性,主要思路为:设计局部时序对比学习方法,采用不同正负样本划分策略,挖掘同一实例不重叠片段之间的时序相关性和判别可分性,增强细粒度特征表达能力;研究全局对比学习方法,通过跨视图语义协同训练来增加正样本,学习多实例不同视图的语义一致性,提高模型的泛化能力。通过两个下游任务对模型效果进行评估,在UCF101和HMDB51数据集的实验结果表明,所提方法在动作识别和视频检索任务上,较前沿主流方法平均提升了2~3.5个百分点。 展开更多
关键词 自监督学习 视频表征学习 时序对比学习 局部对比学习 跨视图协同
下载PDF
多核局部领域适应学习 被引量:10
16
作者 陶剑文 王士同 《软件学报》 EI CSCD 北大核心 2012年第9期2297-2310,共14页
领域适应(或跨领域)学习旨在利用源领域(或辅助领域)中带标签样本来学习一种鲁棒的目标分类器,其关键问题在于如何最大化地减小领域间的分布差异.为了有效解决领域间特征分布的变化问题,提出一种三段式多核局部领域适应学习(multiple ke... 领域适应(或跨领域)学习旨在利用源领域(或辅助领域)中带标签样本来学习一种鲁棒的目标分类器,其关键问题在于如何最大化地减小领域间的分布差异.为了有效解决领域间特征分布的变化问题,提出一种三段式多核局部领域适应学习(multiple kernel local leaning-based domain adaptation,简称MKLDA)方法:1)基于最大均值差(maximum mean discrepancy,简称MMD)度量准则和结构风险最小化模型,同时,学习一个再生多核Hilbert空间和一个初始的支持向量机(support vector machine,简称SVM),对目标领域数据进行初始划分;2)在习得的多核Hilbert空间,对目标领域数据的类别信息进行局部重构学习;3)最后,利用学习获得的类别信息,在目标领域训练学习一个鲁棒的目标分类器.实验结果显示,所提方法具有优化或可比较的领域适应学习性能. 展开更多
关键词 领域适应学习 多核学习 局部学习 模式分类 最大均值差
下载PDF
核分布一致局部领域适应学习 被引量:5
17
作者 陶剑文 王士同 《自动化学报》 EI CSCD 北大核心 2013年第8期1295-1309,共15页
针对领域适应学习(Domain adaptation learning,DAL)问题,提出一种核分布一致局部领域适应学习机(Kernel distribution consistency based local domaina daptation classifier,KDC-LDAC),在某个通用再生核Hilbert空间(Universally repr... 针对领域适应学习(Domain adaptation learning,DAL)问题,提出一种核分布一致局部领域适应学习机(Kernel distribution consistency based local domaina daptation classifier,KDC-LDAC),在某个通用再生核Hilbert空间(Universally reproduced kernel Hilbert space,URKHS),基于结构风险最小化模型,KDC-LDAC首先学习一个核分布一致正则化支持向量机(Support vector machine,SVM),对目标数据进行初始划分;然后,基于核局部学习思想,对目标数据类别信息进行局部回归重构;最后,利用学习获得的类别信息,在目标领域训练学习一个适于目标判别的分类器.人造和实际数据集实验结果显示,所提方法具有优化或可比较的领域适应学习性能. 展开更多
关键词 领域适应学习 核分布一致 局部学习 模式分类 最大平均差
下载PDF
局部学习支持向量机 被引量:4
18
作者 陶剑文 王士同 《控制与决策》 EI CSCD 北大核心 2012年第10期1510-1515,共6页
针对传统支持向量机不能较好地利用数据空间局部信息的问题,提出一种基于局部学习的支持向量机.通过同时最小化局部内散度和最大化局部间散度信息来寻求一个最优的分类决策函数.为了更好地反映数据的局部几何特征,该方法采用适于局部学... 针对传统支持向量机不能较好地利用数据空间局部信息的问题,提出一种基于局部学习的支持向量机.通过同时最小化局部内散度和最大化局部间散度信息来寻求一个最优的分类决策函数.为了更好地反映数据的局部几何特征,该方法采用适于局部学习的测地线距离来度量数据点对间的相似性.另外,通过引入一个能同时控制间隔误差上界和支持向量下界的参数,进一步提升学习泛化能力.人造和实际数据集实验验证了所提出方法的有效性. 展开更多
关键词 局部学习 流形学习 支持向量机 散度
原文传递
局部学习半监督多类分类机 被引量:1
19
作者 吕佳 邓乃扬 +2 位作者 田英杰 邵元海 杨新民 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第3期748-754,共7页
半监督多类分类问题是机器学习和模式识别领域中的一个研究热点,目前大多数多类分类算法是将问题分解成若干个二类分类问题来求解.提出两种类标号表示方法来避免多个二类分类问题的求解,一种是单位圆类标号表示方法,一种是二进制序列类... 半监督多类分类问题是机器学习和模式识别领域中的一个研究热点,目前大多数多类分类算法是将问题分解成若干个二类分类问题来求解.提出两种类标号表示方法来避免多个二类分类问题的求解,一种是单位圆类标号表示方法,一种是二进制序列类标号表示方法,并利用局部学习在二类分类问题中的良好学习特性,提出基于局部学习的半监督多类分类机.实验结果证明采用了基于局部学习的半监督多类分类机错分率更小,稳定性更高. 展开更多
关键词 半监督分类 多类分类机 局部学习 二进制序列 单位圆
原文传递
一种近邻局部学习的稳健性分析
20
作者 毕华 王珏 《模式识别与人工智能》 EI CSCD 北大核心 2008年第6期768-774,共7页
在统计推断中,稳健性是指实际问题的数据来源与我们的模型假定有偏离时,所采用算法的结果受到的扰动很小,并且保持算法的预测性能.本文将统计稳健性的研究方法引入机器学习中,分析得到近邻估计这种局部学习能够在大样本的情形下收敛到 B... 在统计推断中,稳健性是指实际问题的数据来源与我们的模型假定有偏离时,所采用算法的结果受到的扰动很小,并且保持算法的预测性能.本文将统计稳健性的研究方法引入机器学习中,分析得到近邻估计这种局部学习能够在大样本的情形下收敛到 Bayes 最优估计,同时收敛条件可说明近邻估计是稳健估计.在模拟数据和真实数据库上进行实验,结果表明在某些离群点影响模型的情况下,仍保持监督学习预测的泛化性能. 展开更多
关键词 局部学习 稳健性 噪音数据
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部