In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
For the Hermitian inexact Rayleigh quotient iteration (RQI), we consider the local convergence of the inexact RQI with the Lanczos method for the linear systems involved. Some attractive properties are derived for t...For the Hermitian inexact Rayleigh quotient iteration (RQI), we consider the local convergence of the inexact RQI with the Lanczos method for the linear systems involved. Some attractive properties are derived for the residual, whose norm is ξk, of the linear system obtained by the Lanczos method at outer iteration k + 1. Based on them, we make a refined analysis and establish new local convergence results. It is proved that (i) the inexact RQI with Lanezos converges quadratically provided that ξk ≤ξ with a constant ξ≥) 1 and (ii) the method converges linearly provided that ξk is bounded by some multiple of 1/‖τk‖ with ‖τk‖ the residual norm of the approximate eigenpair at outer iteration k. The results are fundamentally different from the existing ones that always require ξk 〈 1, and they have implications on effective implementations of the method. Based on the new theory, we can design practical criteria to control ξk to achieve quadratic convergence and implement the method more effectively than ever before. Numerical experiments confirm our theory and demonstrate that the inexact RQI with Lanczos is competitive to the inexact RQI with MINRES.展开更多
This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The en...This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero. This new algorithm has more flexibility for the acceptance of the trial step and requires less computational costs compared with traditional filter algorithm. The global and local convergence of the proposed algorithm are given under some reasonable conditions. The numerical experiments are reported to show the effectiveness of the dwindling filter algorithm.展开更多
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金supported by National Basic Research Program of China(Grant No.2011CB302400)National Natural Science Foundation of China(Grant No.11071140)
文摘For the Hermitian inexact Rayleigh quotient iteration (RQI), we consider the local convergence of the inexact RQI with the Lanczos method for the linear systems involved. Some attractive properties are derived for the residual, whose norm is ξk, of the linear system obtained by the Lanczos method at outer iteration k + 1. Based on them, we make a refined analysis and establish new local convergence results. It is proved that (i) the inexact RQI with Lanezos converges quadratically provided that ξk ≤ξ with a constant ξ≥) 1 and (ii) the method converges linearly provided that ξk is bounded by some multiple of 1/‖τk‖ with ‖τk‖ the residual norm of the approximate eigenpair at outer iteration k. The results are fundamentally different from the existing ones that always require ξk 〈 1, and they have implications on effective implementations of the method. Based on the new theory, we can design practical criteria to control ξk to achieve quadratic convergence and implement the method more effectively than ever before. Numerical experiments confirm our theory and demonstrate that the inexact RQI with Lanczos is competitive to the inexact RQI with MINRES.
基金supported by the National Natural Science Foundation of China under Grant Nos.11201304,11371253the Innovation Program of Shanghai Municipal Education Commission under Grant No.12YZ174Group of Accounting and Governance Disciplines(10kq03)
文摘This paper proposes a dwindling filter line search algorithm for nonlinear equality constrained optimization. A dwindling filter, which is a modification of the traditional filter, is employed in the algorithm. The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero. This new algorithm has more flexibility for the acceptance of the trial step and requires less computational costs compared with traditional filter algorithm. The global and local convergence of the proposed algorithm are given under some reasonable conditions. The numerical experiments are reported to show the effectiveness of the dwindling filter algorithm.