利用最小二乘法判别变点存在性以及估计变点个数,同时利用改进的局部W h ittle法对长记忆过程的变点及长记忆参数进行估计,并将其应用于上证指数的实证研究.结果表明:上证指数日收益率的波动率序列在不考虑变点的情况下具有显著的长记忆...利用最小二乘法判别变点存在性以及估计变点个数,同时利用改进的局部W h ittle法对长记忆过程的变点及长记忆参数进行估计,并将其应用于上证指数的实证研究.结果表明:上证指数日收益率的波动率序列在不考虑变点的情况下具有显著的长记忆性,而在考虑变点的情况下,其长记忆性并不显著。因此,考虑变点能够避免伪长记忆的存在.展开更多
当移动机器人在行进过程中使用传统人工势场法(artificial potential field method, APF)进行路径规划时,通常会陷入局部最优困境,无法顺利到达目标点。为解决这一问题,首先,对APF算法规划路径失败原因进行分析,其次设置情况判断条件,...当移动机器人在行进过程中使用传统人工势场法(artificial potential field method, APF)进行路径规划时,通常会陷入局部最优困境,无法顺利到达目标点。为解决这一问题,首先,对APF算法规划路径失败原因进行分析,其次设置情况判断条件,判断当机器人陷入局部最小值时,通过在合适位置增加临时引导点的方法,引导其跳出局部极小值点;其次,引入分数阶微积分思想方法结合APF算法,提出混合阶次的分数阶梯度下降法进行位置信息迭代,优化算法的收敛速度和收敛精度;最后,用MATLAB软件对该方法进行仿真,实验结果表明提出的方法可以有效解决局部最小值问题,而且在速度、精度上都有明显的提高,且能适应较为复杂的多障碍物环境,验证了改进方法的有效性、正确性。展开更多
光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了...光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了一种定位收缩法(locate and shrink algorithm,LSA),采用收缩边界的思想使得边界逐渐收缩到GMPP。LSA第一阶段提出了一种峰的定位方法,通过自适应采样结合I-V特性曲线能够定位主要峰的占空比范围。定位法能够与其他单峰算法结合,具有较强的扩展性。第二阶段提出了一种基于三点准则的收缩法,能够在单峰范围内通过收缩边界快速找到峰值点,并且具有很强的环境适应性。将LSA与多个算法进行仿真和硬件实验对比,结果表明LSA在跟踪速度、跟踪精度和稳态振荡方面有着明显优势。展开更多
人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运...人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运动,简化规划模型,解决路径规划中车辆与所在道路相对位置不易表述的问题。提出安全椭圆模型和预测距离的概念来调整势场影响区域,加入基于Frenet坐标系下的参考线势场及动态速度势场改进斥力场函数,解决车辆在静态和动态下的避障问题。利用数学仿真软件进行仿真,以不同车速在直道和弯道场景中对所提出的路径规划方法进行静态和动态避障仿真实验。研究结果表明:不同车速下的前轮转角、横摆角速度均控制在较小范围内,改进算法可以有效解决传统人工势场法的缺陷,同时与快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法相比,其在避障过程中路径规划计算效率提高了42.8%,改进算法优势明显。展开更多
文摘利用最小二乘法判别变点存在性以及估计变点个数,同时利用改进的局部W h ittle法对长记忆过程的变点及长记忆参数进行估计,并将其应用于上证指数的实证研究.结果表明:上证指数日收益率的波动率序列在不考虑变点的情况下具有显著的长记忆性,而在考虑变点的情况下,其长记忆性并不显著。因此,考虑变点能够避免伪长记忆的存在.
文摘当移动机器人在行进过程中使用传统人工势场法(artificial potential field method, APF)进行路径规划时,通常会陷入局部最优困境,无法顺利到达目标点。为解决这一问题,首先,对APF算法规划路径失败原因进行分析,其次设置情况判断条件,判断当机器人陷入局部最小值时,通过在合适位置增加临时引导点的方法,引导其跳出局部极小值点;其次,引入分数阶微积分思想方法结合APF算法,提出混合阶次的分数阶梯度下降法进行位置信息迭代,优化算法的收敛速度和收敛精度;最后,用MATLAB软件对该方法进行仿真,实验结果表明提出的方法可以有效解决局部最小值问题,而且在速度、精度上都有明显的提高,且能适应较为复杂的多障碍物环境,验证了改进方法的有效性、正确性。
文摘光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了一种定位收缩法(locate and shrink algorithm,LSA),采用收缩边界的思想使得边界逐渐收缩到GMPP。LSA第一阶段提出了一种峰的定位方法,通过自适应采样结合I-V特性曲线能够定位主要峰的占空比范围。定位法能够与其他单峰算法结合,具有较强的扩展性。第二阶段提出了一种基于三点准则的收缩法,能够在单峰范围内通过收缩边界快速找到峰值点,并且具有很强的环境适应性。将LSA与多个算法进行仿真和硬件实验对比,结果表明LSA在跟踪速度、跟踪精度和稳态振荡方面有着明显优势。
文摘人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运动,简化规划模型,解决路径规划中车辆与所在道路相对位置不易表述的问题。提出安全椭圆模型和预测距离的概念来调整势场影响区域,加入基于Frenet坐标系下的参考线势场及动态速度势场改进斥力场函数,解决车辆在静态和动态下的避障问题。利用数学仿真软件进行仿真,以不同车速在直道和弯道场景中对所提出的路径规划方法进行静态和动态避障仿真实验。研究结果表明:不同车速下的前轮转角、横摆角速度均控制在较小范围内,改进算法可以有效解决传统人工势场法的缺陷,同时与快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法相比,其在避障过程中路径规划计算效率提高了42.8%,改进算法优势明显。