Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commer...Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process.展开更多
It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competit...It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competitiveness of this emerging technology in the manufacture of wrought aluminum alloy.High quality semi-solid slurry was produced,in which primary α(Al) presents in diameter of 62 μm and shape factor of 0.78 and features no eutectics entrapped.Higher forming pressure results in small grain size,improved shape factor and higher density.Especially,rheoforming can effectively reduce the occurrence of hot tearing.The average yield strength and elongation of the rheoformed samples in the T6 condition are 483 MPa and 8%,respectively.展开更多
Naturally deposited soils are always found in the complex three-dimensional stress state.Constitutive models developed for modeling the three-dimensional mechanical behavior of soils should obey the basic laws of ther...Naturally deposited soils are always found in the complex three-dimensional stress state.Constitutive models developed for modeling the three-dimensional mechanical behavior of soils should obey the basic laws of thermo-mechanical principles.Based on the incremental dissipation function,a new deviatoric shift stress is derived and then introduced into the existing constitutive models to describe the yield behavior in the deviatoric plane for geomaterials.By adopting the proposed shift stress,the relationship between dissipative stress tensors and true stress tensors can be established.Therefore,the threedimensional plastic strain can be calculated reasonably through the associated flow rule in the three-dimensional dissipative stress space.At the same time,three methods that are conventionally adopted for generalizing constitutive models to model the three-dimensional stress-strain relationships are examined under the thermo-mechanical framework.The TS(transformed stress)method is shown to obey the thermo-mechanical rules and the TS space adopted in TS method is actually a translational three-dimensional dissipative stress space.However,it is illustrated that the other two approaches,the method of using failure criterion directly and the method of using g()function,violate the basic rules of thermo-mechanical theories although they may bring convenience and simplicity to numerical analysis for geotechnical engineering.Comparison between model predictions and experimental data confirms the validity of the proposed three-dimensional dissipative stress space.展开更多
文摘Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process.
基金Projects(50804023,50474007) supported by the National Natural Science Foundation of ChinaProject(GJJ08006) supported by the Jiangxi Provincial Education Department,China
文摘It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competitiveness of this emerging technology in the manufacture of wrought aluminum alloy.High quality semi-solid slurry was produced,in which primary α(Al) presents in diameter of 62 μm and shape factor of 0.78 and features no eutectics entrapped.Higher forming pressure results in small grain size,improved shape factor and higher density.Especially,rheoforming can effectively reduce the occurrence of hot tearing.The average yield strength and elongation of the rheoformed samples in the T6 condition are 483 MPa and 8%,respectively.
基金supported by the National Natural Science Foundation of China (Grants Nos. 11072016,51179003,11272031,51209002)
文摘Naturally deposited soils are always found in the complex three-dimensional stress state.Constitutive models developed for modeling the three-dimensional mechanical behavior of soils should obey the basic laws of thermo-mechanical principles.Based on the incremental dissipation function,a new deviatoric shift stress is derived and then introduced into the existing constitutive models to describe the yield behavior in the deviatoric plane for geomaterials.By adopting the proposed shift stress,the relationship between dissipative stress tensors and true stress tensors can be established.Therefore,the threedimensional plastic strain can be calculated reasonably through the associated flow rule in the three-dimensional dissipative stress space.At the same time,three methods that are conventionally adopted for generalizing constitutive models to model the three-dimensional stress-strain relationships are examined under the thermo-mechanical framework.The TS(transformed stress)method is shown to obey the thermo-mechanical rules and the TS space adopted in TS method is actually a translational three-dimensional dissipative stress space.However,it is illustrated that the other two approaches,the method of using failure criterion directly and the method of using g()function,violate the basic rules of thermo-mechanical theories although they may bring convenience and simplicity to numerical analysis for geotechnical engineering.Comparison between model predictions and experimental data confirms the validity of the proposed three-dimensional dissipative stress space.