In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on th...In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on the users oriented parking information recommendation system,the model considers subjective demands of drivers comprehensively,makes a deeply analysis of the evaluation indicators.This recommendation model uses a phased selection method to calculate the optimal objective parking lot.The first stage is screening which based on the users' subjective parking demands;the second stage is processing the candidate parking lots through multiple attribute decision making.Simulation experiments show that this model can effectively solve the problems encountered in the process of finding optimal parking lot,save the driver's parking time and parking costs and also improve the overall utilization of parking facilities to ease the traffic congestion caused by vehicles parked patrol.展开更多
In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,...In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.展开更多
The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using ...The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using the serraphil form. The results of the computer simulation were presented for such states: startup, work under active constant load and the behavior of the machine in terms of exponential and stepping change of the power inverter's control angle.展开更多
Ferroelectricity and metallicity are usually believed not to coexist because conducting electrons would screen out static internal electric fields.In 1965,Anderson and Blount proposed the concept of"ferroelectric...Ferroelectricity and metallicity are usually believed not to coexist because conducting electrons would screen out static internal electric fields.In 1965,Anderson and Blount proposed the concept of"ferroelectric metal",however,it is only until recently that very rare ferroelectric metals were reported.Here,by combining high-throughput ab initio calculations and data-driven machine learning method with new electronic orbital based descriptors,we systematically investigated a large family(2964)of two-dimensional(2D)bimetal phosphates,and discovered 60 stable ferroelectrics with out-of-plane polarization,including 16 ferroelectric metals and 44 ferroelectric semiconductors that contain seven multiferroics.The ferroelectricity origins from spontaneous symmetry breaking induced by the opposite displacements of bimetal atoms,and the full-d-orbital coinage metal elements cause larger displacements and polarization than other elements.For 2D ferroelectric metals,the odd electrons per unit cell without spin polarization may lead to a half-filled energy band around Fermi level and is responsible for the metallicity.It is revealed that the conducting electrons mainly move on a single-side surface of the 2D layer,while both the ionic and electric contributions to polarization come from the other side and are vertical to the above layer,thereby causing the coexistence of metallicity and ferroelectricity.Van der Waals heterostructures based on ferroelectric metals may enable the change of Schottky barrier height or the Schottky-Ohmic contact type and induce a dramatic change of their vertical transport properties.Our work greatly expands the family of 2D ferroelectric metals and will spur further exploration of 2D ferroelectric metals.展开更多
In the research of bio-molecular chips and sensors, extra electric biases are most often employed to control and manipulate the DNA and protein molecules moving through micro/nano-fluidic channels. In order to accurat...In the research of bio-molecular chips and sensors, extra electric biases are most often employed to control and manipulate the DNA and protein molecules moving through micro/nano-fluidic channels. In order to accurately and flexibly control the bio-molecules as they move within the channels, a clear understanding of how the current changes within the buffer solution caused by an applied bias is fundamental. In this report, the current changed value of different buffer solutions, e.g., KC1, TE, and TBE was systematically studied with real-time monitoring and quantitative analysis in the situation of the buffers moving through a fluidic channel with a 5 μm inner diameter, driven by biases of 50 or 100 mV. The results revealed that the relation- ship between the current changed value and the pause interval of the applied electric field is highly consistent with the Hill Equation, which is helpful for accurately detecting and manipulating single biomolecules in microfluidic sensors and biochips.展开更多
Observed Martian crustal magnetism shows that the Mars does not possess a global-scale,dynamo-driven intrinsic magnetic field.In addition,the remnant field at the surface is hemi-spherically asymmetric.Our earlier sim...Observed Martian crustal magnetism shows that the Mars does not possess a global-scale,dynamo-driven intrinsic magnetic field.In addition,the remnant field at the surface is hemi-spherically asymmetric.Our earlier simulation results suggest that the Martian dynamo could be sub-critical near its end(the energy required to sustain a subcritical dynamo is less than that to excite the dynamo)and the generated field morphology is non-dipolar.We further the study to examine the characteristics of the magnetic field via Empirical Orthogonal Function(EOF)analysis on the subcritical dynamo solutions with the Rayleigh number Rth = 2480(below the critical point for the onset of the Martian dynamo).Our results show that the magnetic field is dominantly equatorial dipolar.Reversals and excursions occur frequently,and the magnetic dipole moment does not vary monotonically in time.展开更多
基金partially supported by the National Natural Science Foundation of China under Grants No.60903176the Provincial Natural Science Foundation of Shandong under Grants No.ZR2012FM010,No.ZR2010FQ028+1 种基金the Program for Youth science and technology starfund of Jinan No.TNK1108the Sub-Project of the National Key Technology R&D Program No.2012BAF12B07-3
文摘In order to solve the problem that the drivers can't find the optimal parking lot timely,a reservation based optimal parking lot recommendation model in Internet of Vehicle(IoV) environment is designed.Based on the users oriented parking information recommendation system,the model considers subjective demands of drivers comprehensively,makes a deeply analysis of the evaluation indicators.This recommendation model uses a phased selection method to calculate the optimal objective parking lot.The first stage is screening which based on the users' subjective parking demands;the second stage is processing the candidate parking lots through multiple attribute decision making.Simulation experiments show that this model can effectively solve the problems encountered in the process of finding optimal parking lot,save the driver's parking time and parking costs and also improve the overall utilization of parking facilities to ease the traffic congestion caused by vehicles parked patrol.
基金Projects(51605220,U1637101)supported by the National Natural Science Foundation of ChinaProject(BK20160793)supported by the Jiangsu Provincial Natural Science Foundation,ChinaProject(NS2020029)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.
文摘The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using the serraphil form. The results of the computer simulation were presented for such states: startup, work under active constant load and the behavior of the machine in terms of exponential and stepping change of the power inverter's control angle.
基金the National Key R&D Program of China(2018YFA0305800)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)+2 种基金the National Natural Science Foundation of China(11834014)Beijing Municipal Science and Technology Commission(Z191100007219013)University of Chinese Academy of Sciences。
文摘Ferroelectricity and metallicity are usually believed not to coexist because conducting electrons would screen out static internal electric fields.In 1965,Anderson and Blount proposed the concept of"ferroelectric metal",however,it is only until recently that very rare ferroelectric metals were reported.Here,by combining high-throughput ab initio calculations and data-driven machine learning method with new electronic orbital based descriptors,we systematically investigated a large family(2964)of two-dimensional(2D)bimetal phosphates,and discovered 60 stable ferroelectrics with out-of-plane polarization,including 16 ferroelectric metals and 44 ferroelectric semiconductors that contain seven multiferroics.The ferroelectricity origins from spontaneous symmetry breaking induced by the opposite displacements of bimetal atoms,and the full-d-orbital coinage metal elements cause larger displacements and polarization than other elements.For 2D ferroelectric metals,the odd electrons per unit cell without spin polarization may lead to a half-filled energy band around Fermi level and is responsible for the metallicity.It is revealed that the conducting electrons mainly move on a single-side surface of the 2D layer,while both the ionic and electric contributions to polarization come from the other side and are vertical to the above layer,thereby causing the coexistence of metallicity and ferroelectricity.Van der Waals heterostructures based on ferroelectric metals may enable the change of Schottky barrier height or the Schottky-Ohmic contact type and induce a dramatic change of their vertical transport properties.Our work greatly expands the family of 2D ferroelectric metals and will spur further exploration of 2D ferroelectric metals.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123030)the Interna-tional Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)the National Natural Science Foundation of China(Grant No.61378083)
文摘In the research of bio-molecular chips and sensors, extra electric biases are most often employed to control and manipulate the DNA and protein molecules moving through micro/nano-fluidic channels. In order to accurately and flexibly control the bio-molecules as they move within the channels, a clear understanding of how the current changes within the buffer solution caused by an applied bias is fundamental. In this report, the current changed value of different buffer solutions, e.g., KC1, TE, and TBE was systematically studied with real-time monitoring and quantitative analysis in the situation of the buffers moving through a fluidic channel with a 5 μm inner diameter, driven by biases of 50 or 100 mV. The results revealed that the relation- ship between the current changed value and the pause interval of the applied electric field is highly consistent with the Hill Equation, which is helpful for accurately detecting and manipulating single biomolecules in microfluidic sensors and biochips.
文摘Observed Martian crustal magnetism shows that the Mars does not possess a global-scale,dynamo-driven intrinsic magnetic field.In addition,the remnant field at the surface is hemi-spherically asymmetric.Our earlier simulation results suggest that the Martian dynamo could be sub-critical near its end(the energy required to sustain a subcritical dynamo is less than that to excite the dynamo)and the generated field morphology is non-dipolar.We further the study to examine the characteristics of the magnetic field via Empirical Orthogonal Function(EOF)analysis on the subcritical dynamo solutions with the Rayleigh number Rth = 2480(below the critical point for the onset of the Martian dynamo).Our results show that the magnetic field is dominantly equatorial dipolar.Reversals and excursions occur frequently,and the magnetic dipole moment does not vary monotonically in time.