Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's in...Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. Results indicate that the pile's operationally optimal degree of inclination is approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.展开更多
It has been shown that a quantum state could be perfectly transferred via a spin chain with engineered'always-on interaction'.In this paper,we study a more realistic problem for such a quantum state transfer (...It has been shown that a quantum state could be perfectly transferred via a spin chain with engineered'always-on interaction'.In this paper,we study a more realistic problem for such a quantum state transfer (QST)protocol,how the efficacy of QST is reduced by the quantum decoherence induced by a spatially distributed environment.Here,the environment is universally modeled as a bath of fermions located in different positions.By making use of theirreducible tensor method in angular momentum theory,we investigate the effect of environment on the efficiency of QSTfor both cases at zero and finite temperatures.We not only show the generic exponential decay of QST efficiency as thenumber of sites increase,but also find some counterintuitive effect,the QST can be enhanced as temperature increasesin some cases.展开更多
文摘Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. Results indicate that the pile's operationally optimal degree of inclination is approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils.
基金Supported by the NSFC under Grant Nos.10775048,10704023NFRPC under Grant No.2007CB925204+1 种基金New Century Excellent Talents in University under Grant No.NCET-08-0682the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.07C579
文摘It has been shown that a quantum state could be perfectly transferred via a spin chain with engineered'always-on interaction'.In this paper,we study a more realistic problem for such a quantum state transfer (QST)protocol,how the efficacy of QST is reduced by the quantum decoherence induced by a spatially distributed environment.Here,the environment is universally modeled as a bath of fermions located in different positions.By making use of theirreducible tensor method in angular momentum theory,we investigate the effect of environment on the efficiency of QSTfor both cases at zero and finite temperatures.We not only show the generic exponential decay of QST efficiency as thenumber of sites increase,but also find some counterintuitive effect,the QST can be enhanced as temperature increasesin some cases.