期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于精英知识引导的多种群协作粒子群优化算法 被引量:1
1
作者 张伟 张润雨 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第6期116-128,共13页
目的为了解决粒子群优化(particle swarm optimization,PSO)算法易早熟收敛、后期收敛速度慢、精度低等问题,方法提出一种基于精英知识引导的多种群协作粒子群优化算法(multi-group cooperation particle swarm optimization algorithm,... 目的为了解决粒子群优化(particle swarm optimization,PSO)算法易早熟收敛、后期收敛速度慢、精度低等问题,方法提出一种基于精英知识引导的多种群协作粒子群优化算法(multi-group cooperation particle swarm optimization algorithm,MGCPSO)。首先,采用基于幂函数约束的logistic映射得到分布均匀的初始种群,加快寻优速度并提高找到最优解的概率;其次,在算法执行阶段动态划分多种群,并利用精英知识引导劣势粒子飞行,实现粒子间的信息共享和协同进化,降低粒子在解空间探索的盲目性;最后,综合融入精英知识的反向学习和极值扰动策略对粒子施加变异,帮助粒子扩大搜索区域并加强对最优邻域的精细探索。结果为验证MGCPSO的性能,在30维和100维的基准测试函数上进行了仿真实验研究,结果表明,相比于其他几种改进算法,提出的算法在收敛速度和收敛精度上均有良好表现。结论多种群协作粒子群优化可以有效避免算法早熟收敛和陷入局部最优,同时可以提高算法的全局搜索能力和局部开发能力。 展开更多
关键词 粒子优化算法 LOGISTIC映射 多种 精英知识 反向学习 扰动
下载PDF
基于扰动的精英反向学习粒子群优化算法 被引量:16
2
作者 李俊 汪冲 +1 位作者 李波 方国康 《计算机应用研究》 CSCD 北大核心 2016年第9期2584-2587,2591,共5页
针对粒子群算法容易陷入局部极值、进化后期收敛精度低的缺点,提出了一种基于扰动的精英反向学习粒子群算法。算法采用在粒子迭代的过程中,以一定的概率对当前的最优个体进行动态一般反向学习生成其反向解,引导粒子向最优解空间靠近;用... 针对粒子群算法容易陷入局部极值、进化后期收敛精度低的缺点,提出了一种基于扰动的精英反向学习粒子群算法。算法采用在粒子迭代的过程中,以一定的概率对当前的最优个体进行动态一般反向学习生成其反向解,引导粒子向最优解空间靠近;用一种非线性递减的方式改变惯性权重,以提高算法的收敛速度和收敛精度;采用扰动的方式增强算法的局部探索能力,帮助粒子跳出局部最优解。在14个标准函数上进行仿真测试,结果表明改进算法具有更高的收敛速度和收敛精度,能有效地避免陷入局部最优,适合求解函数优化的问题。 展开更多
关键词 粒子优化算法 精英反向学习 惯性权重 扰动 局部最优解
下载PDF
具有高斯扰动的最优粒子引导粒子群优化算法 被引量:7
3
作者 吴润秀 孙辉 +1 位作者 朱德刚 赵嘉 《小型微型计算机系统》 CSCD 北大核心 2016年第1期146-151,共6页
针对粒子群算法(particle swarm optimization,PSO)收敛速度慢和早熟收敛的问题,提出一种具有高斯扰动的最优粒子引导粒子群优化算法(OGPSO).该算法通过在粒子的速度更新公式上移除自我认知部分,增加局部最优粒子控制的高斯扰动项来实... 针对粒子群算法(particle swarm optimization,PSO)收敛速度慢和早熟收敛的问题,提出一种具有高斯扰动的最优粒子引导粒子群优化算法(OGPSO).该算法通过在粒子的速度更新公式上移除自我认知部分,增加局部最优粒子控制的高斯扰动项来实现改进PSO算法.通过移除自我认知部分,使种群中的粒子主要受当前全局最优粒子引导;通过增加高斯扰动项,又提供了一种防止粒子陷入局部最优点的机制.两种改进措施相结合,既加快了收敛速度,又避免了早熟收敛的问题.在典型测试函数集上的仿真实验结果和与其它经典及新近改进PSO算法的对比实验结果,均表明本文算法有较好的寻优性能及稳定性. 展开更多
关键词 粒子优化算法 高斯扰动 最优粒子引导 局部
下载PDF
具有高斯扰动的局部引导粒子群优化算法 被引量:8
4
作者 吴润秀 孙辉 +1 位作者 朱德刚 赵嘉 《计算机工程与科学》 CSCD 北大核心 2016年第6期1183-1192,共10页
为解决粒子群优化算法PSO存在的早熟收敛问题,提出了一种具有高斯扰动的局部引导粒子群优化算法(LGPSO)。该算法在粒子的速度更新公式上采取两种措施改进PSO:一是移除社会认知部分,使粒子仅受局部引导;二是增加全局最优粒子控制的高斯... 为解决粒子群优化算法PSO存在的早熟收敛问题,提出了一种具有高斯扰动的局部引导粒子群优化算法(LGPSO)。该算法在粒子的速度更新公式上采取两种措施改进PSO:一是移除社会认知部分,使粒子仅受局部引导;二是增加全局最优粒子控制的高斯扰动项。两种改进措施相结合,可有效解决早熟收敛的问题,加快收敛的速度。本文算法通过与经典及新近改进PSO算法的多次对比实验测试,均展现出较好的寻优性能及稳定性。两种改进措施的效果分析实验测试数据和社会认知项与高斯扰动项的对比实验测试数据也进一步验证了本文算法的有效性。 展开更多
关键词 粒子优化算法 高斯扰动 局部引导 局部 社会认知
下载PDF
基于扰动的自适应粒子群优化算法 被引量:4
5
作者 张雁茹 赵志刚 李永恒 《广西科学》 CAS 2017年第3期258-262,共5页
【目的】针对标准粒子群优化算法在应用中暴露出的缺点,如在迭代后期收敛速度慢、搜索精度不高、容易陷入局部最优等,提出一种基于扰动的自适应粒子群优化算法。【方法】该算法将扰动因子加入速度更新公式中,使种群搜索范围扩大;采用自... 【目的】针对标准粒子群优化算法在应用中暴露出的缺点,如在迭代后期收敛速度慢、搜索精度不高、容易陷入局部最优等,提出一种基于扰动的自适应粒子群优化算法。【方法】该算法将扰动因子加入速度更新公式中,使种群搜索范围扩大;采用自适应的惯性权重,以起到平衡全局和局部寻优能力的作用;对最优粒子进行自适应的柯西变异,拓展最优粒子的搜索空间,降低粒子陷入局部最优的可能性;最后对算法进行仿真实验。【结果】新算法能够增强全局搜索能力,有效避免局部最优,具有更快的收敛速度。【结论】新算法克服了标准粒子群优化算法的缺点,为进一步研究粒子群优化算法的改进和应用提供科学依据。 展开更多
关键词 粒子优化算法 扰动 惯性权重 柯西变异
下载PDF
具有拓扑时变和搜索扰动的混合粒子群优化算法 被引量:19
6
作者 周文峰 梁晓磊 +2 位作者 唐可心 李章洪 符修文 《计算机应用》 CSCD 北大核心 2020年第7期1913-1918,共6页
粒子群优化(PSO)算法在求解复杂多峰函数时极易早熟,陷入局部最优无法跳出。研究表明改变粒子间的拓扑结构和调整算法的迭代机制有助于改善种群的多样性,提高算法的寻优能力。因此,提出一种具有拓扑时变和搜索扰动的混合粒子群优化(HPSO... 粒子群优化(PSO)算法在求解复杂多峰函数时极易早熟,陷入局部最优无法跳出。研究表明改变粒子间的拓扑结构和调整算法的迭代机制有助于改善种群的多样性,提高算法的寻优能力。因此,提出一种具有拓扑时变和搜索扰动的混合粒子群优化(HPSO-TS)算法。该算法采用K-medoids聚类算法对粒子群进行动态分簇,形成多个异构子群,以利于子群内粒子间进行信息流通。在速度更新中,增加簇最优粒子的引导,并引入非线性变化极值扰动,帮助粒子搜索更多的区域。而后在位置迭代中引入花授粉算法(FPA)中的转换概率,使粒子在全局搜索和局部搜索之间转换。在全局搜索时结合狮群算法中的母狮觅食机制对粒子的位置进行更新;在局部搜索时引入正弦扰动因子,帮助粒子跳出局部最优。实验结果表明所提算法在求解精度和鲁棒性方面明显优于FPA、PSO、改进粒子群算法(IPSO)、具有动态拓扑结构的粒子群算法(PSO-T);并且随着测试维度和次数的增加,这种优势更加明显。HPSO-TS算法所引入的拓扑时变策略和搜索扰动机制能有效地提高种群的多样性和粒子的活性,从而改善寻优能力。 展开更多
关键词 粒子优化算法 拓扑时变 搜索扰动 聚类 扰动 转换概率 正弦扰动因子
下载PDF
简化粒子群优化算法改进研究
7
作者 吴磊 许榕生 《福建工程学院学报》 CAS 2008年第6期737-741,共5页
简化粒子群优化算法(sPSO)去掉了PSO中的速度项,使算法性能有了显著提高。文章以该算法为基础,讨论了sPSO的改进方向,然后提出了惯性权值优化的简化粒子群优化算法(wsPSO)以及带极值扰动和惯性权值优化的简化粒子群优化算法(wtsPSO),并... 简化粒子群优化算法(sPSO)去掉了PSO中的速度项,使算法性能有了显著提高。文章以该算法为基础,讨论了sPSO的改进方向,然后提出了惯性权值优化的简化粒子群优化算法(wsPSO)以及带极值扰动和惯性权值优化的简化粒子群优化算法(wtsPSO),并通过实验验证了改进的有效性节。 展开更多
关键词 粒子优化算法 惯性权 扰动
下载PDF
基于改进的简化粒子群聚类算法 被引量:7
8
作者 熊众望 罗可 《计算机应用研究》 CSCD 北大核心 2014年第12期3550-3552,共3页
针对粒子群算法后期收敛速度慢、易陷入局部极值的缺点,提出一种基于粒密度和最大距离积法的简化粒子群聚类算法。通过采用线性递减与随机分布相结合的惯性权重策略、添加极值扰动算子、优化粒子个体最优位置,使粒子群算法能够快速收敛... 针对粒子群算法后期收敛速度慢、易陷入局部极值的缺点,提出一种基于粒密度和最大距离积法的简化粒子群聚类算法。通过采用线性递减与随机分布相结合的惯性权重策略、添加极值扰动算子、优化粒子个体最优位置,使粒子群算法能够快速收敛于全局最优。再把改进后的粒子群算法与K-means算法相结合,解决Kmeans算法因随机初始聚类中心而导致聚类效果差、不稳定等问题。通过实验分析,该算法的聚类结果准确率更高、收敛速度更快、稳定性更强。 展开更多
关键词 简化粒子算法 粒密度 最大距离积法 随机分布 扰动算子 K-MEANS算法
下载PDF
嵌入层叠混沌策略的随机粒子群算法 被引量:4
9
作者 李胜 何明辉 +1 位作者 李建林 张力 《模式识别与人工智能》 EI CSCD 北大核心 2015年第10期953-960,共8页
鉴于求解复杂问题时粒子群优化算法易出现早熟收敛的问题,通过引入轨迹扰动因子,提出随机粒子群进化迭代方程.该方程在统计行为中保证粒子向特定的收敛中心逼近,但对"旧址"的依赖性呈现出随机特性,从而使粒子群的快速跳转和... 鉴于求解复杂问题时粒子群优化算法易出现早熟收敛的问题,通过引入轨迹扰动因子,提出随机粒子群进化迭代方程.该方程在统计行为中保证粒子向特定的收敛中心逼近,但对"旧址"的依赖性呈现出随机特性,从而使粒子群的快速跳转和迁移成为可能,避免过早落入局部陷阱.同时该进化方程还利用层叠混沌策略和对称极值扰动策略进一步增强算法的局部收敛性和全局搜索性.实验表明,由上述进化方程和改进策略构成的随机混沌粒子群算法具有鲁棒性较强、收敛速度较快和精度较高等优势,性能优于其他同源粒子群算法. 展开更多
关键词 粒子优化算法 轨迹扰动因子 层叠混沌策略 对称扰动
下载PDF
改进PSO算法在电力系统无功优化中的应用
10
作者 孙国凯 高长伟 吴秀华 《东北电力技术》 2007年第12期17-19,共3页
将改进后的粒子群算法应用于电力系统无功优化问题的求解,克服了传统粒子群算法运算过程繁琐、收敛精度不高、易陷入局部最优的缺点。该优化方法对粒子群算法进行了如下改进:采用简化粒子群优化方程和添加极值扰动算子两种策略,提出了... 将改进后的粒子群算法应用于电力系统无功优化问题的求解,克服了传统粒子群算法运算过程繁琐、收敛精度不高、易陷入局部最优的缺点。该优化方法对粒子群算法进行了如下改进:采用简化粒子群优化方程和添加极值扰动算子两种策略,提出了简化粒子群优化(简称SPSO)算法、带极值扰动粒子群优化(简称DPSO)算法,将二者结合起来提出了带极值扰动的简化粒子群优化(简称DSPSO)算法。DSPSO以更小的种群数和进化代数获得了非常好的优化效果,使PSO算法更加实用化。对IEEE 6节点进行无功优化计算,并与其它算法进行了比较,表明该算法具有较强的全局搜索能力和较高的收敛精度,是求解无功优化的有效方法。 展开更多
关键词 无功优化 粒子算法 扰动
下载PDF
优化基于近红外光谱的联合间隔偏最小二乘法建模检测芝麻油掺伪含量 被引量:7
11
作者 陈洪亮 曾山 王斌 《中国油脂》 CAS CSCD 北大核心 2020年第2期86-90,共5页
应用近红外光谱(NIR)分析技术建立测定芝麻油中大豆油含量的定量分析模型。基于32个含量梯度共384个掺伪芝麻油样品的近红外光谱,首先采用标准正态变量变换(SNV)对光谱进行预处理,再采用无信息变量消除法(UVE)初步筛选波长变量,然后结... 应用近红外光谱(NIR)分析技术建立测定芝麻油中大豆油含量的定量分析模型。基于32个含量梯度共384个掺伪芝麻油样品的近红外光谱,首先采用标准正态变量变换(SNV)对光谱进行预处理,再采用无信息变量消除法(UVE)初步筛选波长变量,然后结合联合间隔偏最小二乘法(SiPLS)和带极值扰动的简化粒子群优化算法(tsPSO)建立芝麻油中大豆油掺伪含量预测模型,经特征波段选取后建立的模型变量减少,波长变量由451个减少到219个,训练集和测试集相关系数分别为0.9998和0.9919,均方根误差分别为4.39E-2和3.99E-2。结果表明,该方法能够作为芝麻油中大豆油掺伪含量的快速检测方法。此外,该方法也可应用到芝麻油中掺入其他低价值油的掺伪含量检测中。 展开更多
关键词 近红外光谱 无信息变量消除法 联合间隔偏最小二乘法 带极值扰动的简化粒子群优化算法
下载PDF
基于PSO算法的SOR最优松弛因子选取研究 被引量:1
12
作者 薛丹 姚若侠 《计算机技术与发展》 2020年第12期15-20,共6页
目前选取逐次超松弛迭代法(SOR)最优松弛因子的基本思路是:在区间(0,2)上,根据确定的分割策略,选取分割点的值作为松弛因子来计算相应的SOR迭代次数,将小于预设的SOR迭代次数阈值的松弛因子作为最优解返回,例如二分比较法、黄金分割法... 目前选取逐次超松弛迭代法(SOR)最优松弛因子的基本思路是:在区间(0,2)上,根据确定的分割策略,选取分割点的值作为松弛因子来计算相应的SOR迭代次数,将小于预设的SOR迭代次数阈值的松弛因子作为最优解返回,例如二分比较法、黄金分割法、逐步搜索法等,其缺陷在于不易找到全局最优松弛因子且对参数依赖较大。为克服传统策略解决该问题的不足,受粒子群优化算法及其在不同场景成功应用的启发,提出利用基本粒子群优化算法(bPSO)、简化粒子群优化算法(sPSO)、带极值扰动粒子群优化算法(tPSO)和带极值扰动的简化粒子群优化算法(tsPSO)来搜索SOR迭代法最优松弛因子。通过对两个不同的线性方程组的实证测试,验证了四种算法在选取SOR最优松弛因子问题上的有效性。 展开更多
关键词 粒子优化算法 简化粒子优化算法 扰动粒子优化算法 SOR迭代法 最优松弛因子
下载PDF
基于tPSO-BPNN的赖氨酸发酵软测量 被引量:19
13
作者 黄丽 孙玉坤 +2 位作者 嵇小辅 黄永红 王博 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第10期2317-2321,共5页
赖氨酸发酵过程是一个复杂的非线性强耦合动态过程。某些发酵过程关键生物参数(如菌体浓度、基质浓度、产物浓度)难以实时在线检测。采用软测量技术可解决这一难题。建立了用于生物参数状态预估的tPSO-BPNN软测量模型。针对BPNN软测量... 赖氨酸发酵过程是一个复杂的非线性强耦合动态过程。某些发酵过程关键生物参数(如菌体浓度、基质浓度、产物浓度)难以实时在线检测。采用软测量技术可解决这一难题。建立了用于生物参数状态预估的tPSO-BPNN软测量模型。针对BPNN软测量模型易陷入局部极小值,进化后期收敛速度慢以及全局搜索能力弱等缺陷,tPSO-BPNN软测量模型采用带极值扰动粒子群(tPSO)算法优化BP神经网络权值和阈值。仿真结果表明,tPSO-BPNN软测量模型的性能优于BPNN软测量模型,能够准确预估赖氨酸发酵过程中的关键参数,具有较高的精度和良好的应用前景。 展开更多
关键词 扰动粒子优化 赖氨酸 生化参数 软测量
下载PDF
基于并联自适应随机共振的微弱信号检测方法 被引量:7
14
作者 张勇亮 李国林 张晓瑜 《计算机工程与设计》 北大核心 2017年第5期1324-1330,共7页
针对传统大参数信号自适应随机共振方法存在的变换尺度变化范围选取缺乏固定标准、参数自适应效率低、检测到的目标信号不够明显等不足,提出一种基于并联自适应随机共振的微弱信号检测方法,实现强噪声背景下大参数微弱信号的快速、有效... 针对传统大参数信号自适应随机共振方法存在的变换尺度变化范围选取缺乏固定标准、参数自适应效率低、检测到的目标信号不够明显等不足,提出一种基于并联自适应随机共振的微弱信号检测方法,实现强噪声背景下大参数微弱信号的快速、有效检测。推导出基于采样频率的变换尺度的最大变化范围,将该范围平均分段,以输出信噪比为适应度函数,在变换尺度各子搜索范围和共振系统参数搜索范围内,采用带极值扰动的简化粒子群算法对变换尺度及系统参数进行自适应优化选择;将优化得到的变换尺度和系统参数分别作为并联各子随机共振系统的输入信号变换尺度和系统参数;将各子系统的输出响应分别进行自相关处理后,合成为最终的系统输出响应。仿真及实际应用结果表明,该方法对强噪声背景中的微弱目标信号具有准确的检测能力,能够有效提高参数自适应效率,突出检测到的目标信号,增强强噪声背景下微弱信号的检测能力。 展开更多
关键词 随机共振 自适应 并联 扰动的简化粒子算法 自相关分析
下载PDF
改进的PSO在说话人辨识中的应用
15
作者 骆瑞玲 李明 李睿 《计算机工程与应用》 CSCD 北大核心 2010年第2期135-137,169,共4页
针对PSO算法容易陷于局部极值的缺点,提出了一种改进的PSO优化算法(IPSO)。该算法根据粒子进化速度对粒子个体极值进行自适应扰动,使粒子及时跳出局部极值点而继续优化,从而扩大粒子搜索范围。改进后的PSO算法加快了收敛速度,能够很好... 针对PSO算法容易陷于局部极值的缺点,提出了一种改进的PSO优化算法(IPSO)。该算法根据粒子进化速度对粒子个体极值进行自适应扰动,使粒子及时跳出局部极值点而继续优化,从而扩大粒子搜索范围。改进后的PSO算法加快了收敛速度,能够很好地调整算法的全局与局部搜索能力之间的平衡。同时,给出了应用IPSO算法训练支持向量机的方法,并将其应用于说话人辨识。改进后的PSO可以使SVM用较少的SV取得最优分类面,从而减少SVM的训练量,提高了说话人辨识速度。 展开更多
关键词 说话人辨识 粒子优化算法 速度进化因子 扰动
下载PDF
锚杆钻车钻臂定位控制方法 被引量:2
16
作者 李力恒 宋建成 +1 位作者 田慕琴 王相元 《工矿自动化》 CSCD 北大核心 2023年第3期77-84,123,共9页
目前常用代数法和几何法实现锚杆钻车钻臂定位控制,存在效率低、有无解或多解情况、通用性差等问题。采用粒子群优化(PSO)算法进行机械臂定位控制具有编程简单、搜索性能强、容错性好等优势,但易陷入局部最优解。目前基于改进PSO算法的... 目前常用代数法和几何法实现锚杆钻车钻臂定位控制,存在效率低、有无解或多解情况、通用性差等问题。采用粒子群优化(PSO)算法进行机械臂定位控制具有编程简单、搜索性能强、容错性好等优势,但易陷入局部最优解。目前基于改进PSO算法的机械臂定位控制整体寻优效率较低,寻优时间过长。针对上述问题,在精英反向粒子群优化(EOPSO)算法基础上,引入混沌初始化、交叉操作、变异操作和极值扰动,设计了混沌交叉精英变异反向粒子群优化(CEMOPSO)算法。采用标准测试函数对PSO算法、EOPSO算法、交叉精英反向粒子群优化(CEOPSO)算法、CEMOPSO算法进行测试,结果表明CEMOPSO算法的稳定性、精度、收敛速度最优。建立了锚杆钻车钻臂运动模型,采用CEMOPSO算法进行钻臂定位控制,并在Matlab软件中对控制性能进行仿真研究,结果表明:在相同的迭代次数和误差精度约束条件下,采用CEMOPSO算法时钻臂位置误差和姿态误差从迭代初期即具有极快的收敛速度,且位置误差和姿态误差均小于其他3种算法,误差曲线较平稳,最大位置误差为0.005 m,最大姿态误差为0.005 rad;设定位置误差为1 mm、姿态误差为0.01 rad时,CEMOPSO算法的平均迭代次数为343,位置误差为0.1 mm、姿态误差为0.001 rad时平均迭代次数为473,在相同的定位精度条件下,CEMOPSO算法的收敛速度和稳定性优于其他3种算法,满足工程应用要求,且求解精度越高,其优越性越突出。 展开更多
关键词 锚杆钻车 钻臂定位控制 精英反向粒子优化算法 混沌初始化 交叉变异 高斯变异 扰动 柯西变异
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部