In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this ...In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.展开更多
Hydrological service is a hot issue in the current researches of ecosystem service, particularly in the upper reaches of mountain rivers in dry land areas, where the Qilian Mountain is a representative one. The Qilian...Hydrological service is a hot issue in the current researches of ecosystem service, particularly in the upper reaches of mountain rivers in dry land areas, where the Qilian Mountain is a representative one. The Qilian Mountain, where forest, shrubland and grassland consist of its main ecosystems, can provide fresh water and many other ecosystem services, through a series of eco-hydrological process such as precipitation interception, soil water storage, and fresh water provision. Thus, monitoring water regulation and assessing the hydrological service of the Qilian Mountain are meaningful and helpful for the healthy development of the lower reaches of arid and semi-arid areas. In recent 10 years, hydrological services have been widely researched in terms of scale and landscape pattern, including water conservation, hydrological responses to afforestation and their ecological effects. This study, after analyzing lots of current models and applications of geographical information system(GIS) in hydrological services, gave a scientific and reasonable evaluation of mountain ecosystem in eco-hydrological services, by employing the combination of international forefronts and contentious issues into the Qilian Mountain. Assessments of hydrological services at regional or larger scales are limited compared with studies within watershed scale in the Qilian Mountain. In our evaluation results of forest ecosystems, it is concluded that long-term observation and dynamic monitoring of different types of ecosystem are indispensable, and the hydrological services and the potential variation in water supplement on regional and large scales should be central issues in the future research.v展开更多
基金the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05060104)
文摘In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.
基金Under the auspices of Ministry of Science and Technology of China(No.2012BAC08B01)
文摘Hydrological service is a hot issue in the current researches of ecosystem service, particularly in the upper reaches of mountain rivers in dry land areas, where the Qilian Mountain is a representative one. The Qilian Mountain, where forest, shrubland and grassland consist of its main ecosystems, can provide fresh water and many other ecosystem services, through a series of eco-hydrological process such as precipitation interception, soil water storage, and fresh water provision. Thus, monitoring water regulation and assessing the hydrological service of the Qilian Mountain are meaningful and helpful for the healthy development of the lower reaches of arid and semi-arid areas. In recent 10 years, hydrological services have been widely researched in terms of scale and landscape pattern, including water conservation, hydrological responses to afforestation and their ecological effects. This study, after analyzing lots of current models and applications of geographical information system(GIS) in hydrological services, gave a scientific and reasonable evaluation of mountain ecosystem in eco-hydrological services, by employing the combination of international forefronts and contentious issues into the Qilian Mountain. Assessments of hydrological services at regional or larger scales are limited compared with studies within watershed scale in the Qilian Mountain. In our evaluation results of forest ecosystems, it is concluded that long-term observation and dynamic monitoring of different types of ecosystem are indispensable, and the hydrological services and the potential variation in water supplement on regional and large scales should be central issues in the future research.v