目的利用SAS开发的CAUSALTRT过程,实现三类估计方法的因果效应估计。方法采用SmokingWeight数据集,以戒烟为处理变量,体重变化为结局变量,其他因素为混杂变量,通过增强逆概率加权法(augmented inverse probability weighting,AIPW)对平...目的利用SAS开发的CAUSALTRT过程,实现三类估计方法的因果效应估计。方法采用SmokingWeight数据集,以戒烟为处理变量,体重变化为结局变量,其他因素为混杂变量,通过增强逆概率加权法(augmented inverse probability weighting,AIPW)对平均处理效应(the average treatment effect,ATE)进行估计,通过回归调整法(regression adjustment,REGADJ)对处理组平均处理效应(the average treatment effect for the treated,ATT)进行估计。结果戒烟对体重变化的ATE和ATT分别为3.209(95%CI:2.232~4.187)和3.276(95%CI:2.332~4.219)。结论CAUSALTRT可以实现不同的因果效应估计,但应用时需要考虑其是否满足前提假设以及注意事项。展开更多
文摘目的利用SAS开发的CAUSALTRT过程,实现三类估计方法的因果效应估计。方法采用SmokingWeight数据集,以戒烟为处理变量,体重变化为结局变量,其他因素为混杂变量,通过增强逆概率加权法(augmented inverse probability weighting,AIPW)对平均处理效应(the average treatment effect,ATE)进行估计,通过回归调整法(regression adjustment,REGADJ)对处理组平均处理效应(the average treatment effect for the treated,ATT)进行估计。结果戒烟对体重变化的ATE和ATT分别为3.209(95%CI:2.232~4.187)和3.276(95%CI:2.332~4.219)。结论CAUSALTRT可以实现不同的因果效应估计,但应用时需要考虑其是否满足前提假设以及注意事项。