期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计 被引量:8
1
作者 田彦涛 张宇 +1 位作者 王晓玉 陈华 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第3期845-852,共8页
针对电动汽车质心侧偏角不便使用传感器直接测量的问题,提出采用平方根无迹卡尔曼滤波(SR-UKF)算法来估计电动汽车质心侧偏角。基于建立的车辆侧向动力学模型、非线性轮胎动力学模型以及估计得到的质心侧偏角,使用最小二乘法对轮胎侧偏... 针对电动汽车质心侧偏角不便使用传感器直接测量的问题,提出采用平方根无迹卡尔曼滤波(SR-UKF)算法来估计电动汽车质心侧偏角。基于建立的车辆侧向动力学模型、非线性轮胎动力学模型以及估计得到的质心侧偏角,使用最小二乘法对轮胎侧偏刚度进行估计,得到轮胎侧偏刚度信息。最后,通过试验验证了基于SR-UKF的电动汽车质心侧偏角估计算法具有较高的精度,能够为后续车辆稳定性控制系统的设计提供有效的车辆状态信息。 展开更多
关键词 自动控制技术 侧偏角估计 轮胎侧偏刚度 平方根无迹卡尔曼滤波算法 最小二乘法
下载PDF
基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计 被引量:76
2
作者 程泽 杨磊 孙幸勉 《中国电机工程学报》 EI CSCD 北大核心 2018年第8期2384-2393,共10页
为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalma... 为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalman filter,SRUKF)进行改进,提出一种自适应SRUKF(adaptive square-root unscented Kalman filter,ASRUKF)算法,该算法通过对状态方差阵和噪声方差阵平方根的递推估算,确保了状态和噪声方差阵的对称性和非负定性。验证结果显示,相比于SRUKF算法,ASRUKF算法能够得到精度更高的SOC估计值,并在FUDS工况下将最大SOC估计误差降低4%。针对电池欧姆内阻和容量参数随着电池的老化而变化的现象,对内阻和容量进行实时在线估计,在此基础上完成对SOH参数的预测。验证结果表明,联合估计算法对电池的欧姆电阻和容量有一个较好的估计,进一步提升了电池状态的估计精度。 展开更多
关键词 锂离子电池 荷电状态 健康状态 Sage-Husa滤波 自适应平方根无迹卡尔曼滤波
原文传递
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法
3
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
下载PDF
基于平方根无迹卡尔曼滤波平滑算法的水下纯方位目标跟踪(英文) 被引量:12
4
作者 王宝宝 吴盘龙 《中国惯性技术学报》 EI CSCD 北大核心 2016年第2期180-184,共5页
为了避免被动跟踪中非线性带来的计算复杂化及跟踪精度的下降,提出将平方根无迹卡尔曼滤波平滑算法(SR-UKFS)应用到水下纯方位目标跟踪。SR-UKFS利用Rauch-Tung-Striebel(RTS)平滑算法将平方根无迹卡尔曼滤波(SR-UKF)作为前向滤波算法... 为了避免被动跟踪中非线性带来的计算复杂化及跟踪精度的下降,提出将平方根无迹卡尔曼滤波平滑算法(SR-UKFS)应用到水下纯方位目标跟踪。SR-UKFS利用Rauch-Tung-Striebel(RTS)平滑算法将平方根无迹卡尔曼滤波(SR-UKF)作为前向滤波算法得到的目标状态估计向后平滑,得到前一时刻目标状态估计,再利用该状态估计值进行再次滤波得到当前时刻目标状态估计。该算法得到的前一时刻的目标状态估计更加精确,从而进一步提高了目标跟踪的精度。最后,通过对SR-UKFS算法和SR-UKF算法的跟踪性能进行了对比分析和验证,仿真结果表明在相同条件下,SR-UKFS算法能减少59%的位置误差和54%的速度误差,SR-UKFS算法应用于水下纯方位目标跟踪系统是有效的,为水下纯方位目标跟踪系统的工程实现提供了非常有价值的参考。 展开更多
关键词 目标跟踪 纯方位 平方根无迹卡尔曼滤波 平滑算法 前向滤波 后向平滑
下载PDF
基于平方根无迹卡尔曼滤波的锂电池状态估计 被引量:37
5
作者 费亚龙 谢长君 +2 位作者 汤泽波 曾春年 全书海 《中国电机工程学报》 EI CSCD 北大核心 2017年第15期4514-4520,共7页
在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方... 在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方根无迹卡尔曼滤波(square root unscented Kalman filter,SRUKF)算法对SOC进行实时估计及更新。利用无迹变换(unscented transformation,UT)精确估计系统方程的均值和协方差,使估算值达到二阶精度。利用平方根算法保证状态协方差的半正定性,提高数字计算的稳定性。通过实验对比,验证了该算法的有效性。结果表明,该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC估计的实际需求。 展开更多
关键词 锂电池 荷电状态 平方根无迹卡尔曼滤波 无迹 变换 平方根算法
原文传递
无迹卡尔曼滤波及其平方根形式在电力系统动态状态估计中的应用 被引量:46
6
作者 卫志农 孙国强 庞博 《中国电机工程学报》 EI CSCD 北大核心 2011年第16期74-80,共7页
针对扩展卡尔曼滤波(extended Kalman filter,EKF)的不足,将不需要对非线性系统函数进行线性化的无迹卡尔曼滤波(unscented Kalman filter,UKF)方法引入电力系统动态状态估计,采用生成Sigma点数量最少的比例最小偏度单形采样策略进行无... 针对扩展卡尔曼滤波(extended Kalman filter,EKF)的不足,将不需要对非线性系统函数进行线性化的无迹卡尔曼滤波(unscented Kalman filter,UKF)方法引入电力系统动态状态估计,采用生成Sigma点数量最少的比例最小偏度单形采样策略进行无迹变换。以IEEE 14系统为算例,仿真结果表明引入UKF后,估计结果的精度有所提高,但算法的效率较低,且数值稳定性较差。进一步引入平方根形式的UKF(square root UKF,SRUKF)模型,IEEE 14及IEEE 30测试系统的仿真结果证明:在不需要大量牺牲计算时间的同时,算法的数值稳定性得到了改善。表明SRUKF的引入对动态状态估计方法的改进是有效的。 展开更多
关键词 电力系统 动态状态估计 扩展卡尔曼滤波 无迹 卡尔曼滤波 平方根形式的无迹卡尔曼滤波
原文传递
非线性自适应平方根无迹卡尔曼滤波方法研究 被引量:18
7
作者 张玉峰 周奇勋 +1 位作者 周勇 张举中 《计算机工程与应用》 CSCD 北大核心 2016年第16期36-40,共5页
针对带有附加噪声且噪声特性未知的系统,提出了一种非线性卡尔曼滤波方法——自适应平方根无迹卡尔曼滤波(NASRUKF)方法,该方法基于平方根滤波的思想,对传统的Sage-Husa自适应滤波算法进行了改进,并与平方根无迹卡尔曼滤波(SRUKF)算法... 针对带有附加噪声且噪声特性未知的系统,提出了一种非线性卡尔曼滤波方法——自适应平方根无迹卡尔曼滤波(NASRUKF)方法,该方法基于平方根滤波的思想,对传统的Sage-Husa自适应滤波算法进行了改进,并与平方根无迹卡尔曼滤波(SRUKF)算法相结合用来进行非线性滤波。该算法能直接对非线性系统的状态方差阵和噪声方差阵的平方根进行递推与估算,确保状态和噪声方差阵的对称性和非负定性。将所提方法通过计算机仿真技术与SRUKF算法进行对比,结果表明NASRUKF方法在滤波精度、稳定性和自适应能力方面均优于SRUKF方法。 展开更多
关键词 非线性自适应平方根无迹卡尔曼滤波方法(NASRUKF) 卡尔曼滤波 平方根无迹卡尔曼滤波(SRUKF) Sage-Husa滤波 非线性滤波 预估
下载PDF
平方根无迹卡尔曼滤波作球面变换的SOC估计 被引量:2
8
作者 何俊儒 王洪诚 +1 位作者 杨欣荣 王蕾 《电源技术》 CAS CSCD 北大核心 2018年第1期114-118,共5页
针对现有的电池荷电状态(SOC)估计方法存在计算推导过程复杂以及线性化精度低的缺点,提出了一种新的基于平方根无迹卡尔曼滤波在单位超球体中作球面变换的锂电池SOC估计方法。这种方法无需对非线性模型线性化且与传统的无迹卡尔曼滤波相... 针对现有的电池荷电状态(SOC)估计方法存在计算推导过程复杂以及线性化精度低的缺点,提出了一种新的基于平方根无迹卡尔曼滤波在单位超球体中作球面变换的锂电池SOC估计方法。这种方法无需对非线性模型线性化且与传统的无迹卡尔曼滤波相比,通过球面变换得到的Sigma点也更少,从而降低了计算要求。修正了电池的二阶等效电路模型,然后给出了所提出估计方法的具体步骤。最后,通过实验对估计方法进行了验证,分析了所提出的方法在SOC估计精度和鲁棒性方面的性能。实验表明,所提出的估计方法能顺利地完成电池SOC的精确估计,估计误差最大仅为4.98%,估计精度受参数变化影响小,具有一定的鲁棒性。 展开更多
关键词 锂电池 二阶等效电路模型 SOC 平方根无迹卡尔曼滤波 球面变换
下载PDF
基于分数阶模型多新息无迹卡尔曼滤波算法的超级电容SOC估计
9
作者 郑轶 许永红 +3 位作者 张红光 童亮 李力华 张兆龙 《自动化应用》 2024年第7期103-105,共3页
对超级电容的SOC估计展开了研究。首先,搭建了超级电容测试平台,用于超级电容的参数辨识,并对超级电容进行了常规性能测试;其次,在不同的环境温度和动态工况下采用多种算法进行超级电容SOC估计。结果表明,采用分数阶模型多新息无迹卡尔... 对超级电容的SOC估计展开了研究。首先,搭建了超级电容测试平台,用于超级电容的参数辨识,并对超级电容进行了常规性能测试;其次,在不同的环境温度和动态工况下采用多种算法进行超级电容SOC估计。结果表明,采用分数阶模型多新息无迹卡尔曼滤波(FOMIUKF)算法对超级电容SOC的估计精度最高,对超级电容的路端电压跟随情况最好,估计结果的均方根误差和平均绝对误差的最大值分别约为1.8%和1.73%。 展开更多
关键词 超级电容 分数阶模型 参数辨识 多新息无迹卡尔曼滤波算法 荷电状态估计
下载PDF
平方根无迹卡尔曼滤波仅测角导航的空间交会闭环协方差分析方法
10
作者 尤岳 王华 +1 位作者 Christophe Paccolat 李九人 《国防科技大学学报》 EI CAS CSCD 北大核心 2017年第4期33-39,共7页
针对基于仅测角导航的空间交会问题,开展了采用线性协方差进行闭环控制误差快速分析方法的研究。建立了基于平方根无迹卡尔曼滤波(Square Root Unscented Kalman Filter,SRUKF)的仅测角导航算法并推导了观测敏感矩阵,构建了基于多脉冲H... 针对基于仅测角导航的空间交会问题,开展了采用线性协方差进行闭环控制误差快速分析方法的研究。建立了基于平方根无迹卡尔曼滤波(Square Root Unscented Kalman Filter,SRUKF)的仅测角导航算法并推导了观测敏感矩阵,构建了基于多脉冲Hill制导的闭环控制线性协方差分析模型。算例验证结果表明:提出的闭环控制协方差分析结果与Monte Carlo打靶结果能够很好地吻合;该方法适用于采用传统扩展卡尔曼滤波(Extended Kalman Filter,EKF)的仅测角导航问题,但其迹向位置的估计存在一个与该方向控制误差方差相当的偏心,其误差椭圆的长轴和短轴分别比基于SRUKF的估计结果大24.68%和20.56%。此外,由于采用了QR分解和Cholesky因子更新两种高效的代数运算,基于SRUKF的协方差分析模型的计算速度要比基于EKF的协方差分析模型的大10%。 展开更多
关键词 平方根无迹卡尔曼滤波 仅测角导航 闭环协方差分析 空间交会
下载PDF
基于修正的自适应平方根容积卡尔曼滤波算法 被引量:9
11
作者 李春辉 马健 +3 位作者 杨永建 肖冰松 邓有为 盛涛 《系统工程与电子技术》 EI CSCD 北大核心 2021年第7期1824-1830,共7页
目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root... 目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root cubature Kalman filter,SRCKF)的基础上,提出一种基于修正的自适应SRCKF算法。该算法通过设置判定门限和修正准则,直接对状态预测值或滤波增益进行修正以平衡先验的预测值和后验反馈的量测值在滤波中所占的比重,进而减小状态估计误差。仿真结果表明,所提算法具有在目标状态突变和量测非线性时的良好滤波性能和数值稳定性,同时相比较需要计算渐消因子的STF算法,该算法在计算量和收敛速度上具有优势。 展开更多
关键词 目标建模 平方根容积卡尔曼滤波 修正算法 自适应滤波
下载PDF
基于粒子群算法和平方根平淡卡尔曼滤波的北斗导航系统定位估计算法 被引量:3
12
作者 陈小玲 茅旭初 《上海交通大学学报》 EI CAS CSCD 北大核心 2017年第5期592-597,共6页
为提高北斗定位系统(BDS)的估计精度,克服传统平淡卡尔曼滤波(UKF)算法中可能因状态量协方差矩阵失去正定性而导致滤波器发散的问题,将平方根平淡卡尔曼滤波(SRUKF)算法应用于BDS定位估计.在此基础上,为进一步提高SRUKF算法的性能,引入... 为提高北斗定位系统(BDS)的估计精度,克服传统平淡卡尔曼滤波(UKF)算法中可能因状态量协方差矩阵失去正定性而导致滤波器发散的问题,将平方根平淡卡尔曼滤波(SRUKF)算法应用于BDS定位估计.在此基础上,为进一步提高SRUKF算法的性能,引入粒子群优化(PSO)算法,提出基于PSO和SRUKF算法的BDS定位估计(PSO-SRUKF)算法.结果表明,PSO-SRUKF算法可以降低系统噪声和测量噪声特性估计不准确带来的误差,有效提高了BDS定位精度和稳定性. 展开更多
关键词 平淡卡尔曼滤波算法 平方根平淡卡尔曼滤波算法 粒子群优化算法 北斗定位系统 定位模型
下载PDF
一种基于衰减记忆滤波的平方根无迹卡尔曼滤波PHD-SLAM方法 被引量:2
13
作者 孙陶莹 章飞 曾庆军 《江苏科技大学学报(自然科学版)》 CAS 2019年第3期75-82,共8页
针对海洋背景噪声和水声传感器测量噪声大、信噪比低所导致的水下SLAM方法数据关联复杂、精度低的问题,提出一种基于衰减记忆滤波的平方根无迹卡尔曼滤波PHD-SLAM方法,该方法基于PHD滤波避免了复杂的数据关联,且在非线性函数高斯权重更... 针对海洋背景噪声和水声传感器测量噪声大、信噪比低所导致的水下SLAM方法数据关联复杂、精度低的问题,提出一种基于衰减记忆滤波的平方根无迹卡尔曼滤波PHD-SLAM方法,该方法基于PHD滤波避免了复杂的数据关联,且在非线性函数高斯权重更新过程中引入平方根无迹变换,并进一步结合衰减记忆滤波,解决了由于模型误差和计算误差造成的协方差矩阵非正定和不对称性所导致的滤波发散问题,提高水下SLAM方法的精度.仿真实验将所提方法与RB-PHD-SLAM和UKF-PHD-SLAM方法进行对比分析,结果表明所提方法在对自身定位及地图特征估计精度上均有了明显的提高. 展开更多
关键词 概率假设密度 同步定位与地图构建 平方根无迹卡尔曼滤波 衰减记忆滤波
下载PDF
改进的强追踪平方根无迹卡尔曼滤波时变结构参数识别 被引量:6
14
作者 杨纪鹏 夏烨 +1 位作者 闫业祥 孙利民 《振动与冲击》 EI CSCD 北大核心 2021年第23期74-82,126,共10页
地震作用下时变结构参数识别一直为研究者所关心,传统扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)等方法存在时变结构参数跟踪识别能力弱、协方差矩阵开方时矩阵奇异导致计算不稳定等问题。基于平方根无迹卡尔曼滤波(SRUKF),提出一种改... 地震作用下时变结构参数识别一直为研究者所关心,传统扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)等方法存在时变结构参数跟踪识别能力弱、协方差矩阵开方时矩阵奇异导致计算不稳定等问题。基于平方根无迹卡尔曼滤波(SRUKF),提出一种改进的强追踪平方根无迹卡尔曼滤波(MSTSRUKF)方法。首先使用QR分解改进平方根无迹卡尔曼滤波算法中协方差矩阵平方根计算方法,使计算过程无条件数值稳定;其次改进滤波更新中协方差矩阵平方根的计算方法,同时引入观测矩阵的等价形式,保证算法的稳定性的同时,避免求解复杂系统的Jacobian矩阵;最后引入强追踪滤波技术,更新时间预测协方差矩阵,使算法具备时变参数跟踪能力。数值分析结果表明,MSTSRUKF算法能有效识别线性和非线性系统突变参数,同时能较准确地预测结构状态,计算过程中数值稳定,算法具有较强的抗噪性。 展开更多
关键词 地震 平方根无迹卡尔曼滤波(SRUKF) QR分解 时变参数识别
下载PDF
改进型平方根无迹卡尔曼曼滤滤波及其在无轴承永磁同步电机无速度传感器运行中的应应用用 被引量:14
15
作者 许波 朱熀秋 +2 位作者 姬伟 潘伟 孙晓东 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第1期53-58,共6页
平方根无迹卡尔曼滤波(SRUKF)解决了标准无迹卡尔曼滤波(UKF)中由于误差协方差阵负定而引起的滤波发散问题,保证了算法的数值稳定性,但仍存在对模型参数变化的鲁棒性差、收敛速度慢及对突变状态的跟踪能力低等缺陷.因此,本文提出一种改... 平方根无迹卡尔曼滤波(SRUKF)解决了标准无迹卡尔曼滤波(UKF)中由于误差协方差阵负定而引起的滤波发散问题,保证了算法的数值稳定性,但仍存在对模型参数变化的鲁棒性差、收敛速度慢及对突变状态的跟踪能力低等缺陷.因此,本文提出一种改进SRUKF滤波,通过引入时变渐消因子和弱化因子,实时修正滤波增益矩阵和误差协方差平方根矩阵,实现残差序列正交,确保SRUKF滤波保持对目标实际状态的准确跟踪.将该算法在无轴承永磁同步电机无速度传感器矢量控制系统中进行仿真研究.结果表明:改进SRUKF非线性近似精度、数值稳定性及滤波精度更高,在系统状态突变或负载扰动时,鲁棒性更强,能够有效实现转速及转子角度的准确估计,确保转子稳定悬浮运行. 展开更多
关键词 平方根无迹卡尔曼滤波(SRUKF) 改进SRUKF 无轴承永磁同步电机 无速度传感器
下载PDF
平方根嵌入式容积卡尔曼粒子滤波算法 被引量:7
16
作者 刘华 缪晨 吴文 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第4期471-476,共6页
为了提高现有粒子滤波算法对非线性、非高斯系统的状态估计精度,该文提出了一种平方根嵌入式容积粒子滤波(Square-root imbedded cubature particle filter,SICPF)算法。该算法采用平方根嵌入式容积卡尔曼滤波(Square-root imbedded cub... 为了提高现有粒子滤波算法对非线性、非高斯系统的状态估计精度,该文提出了一种平方根嵌入式容积粒子滤波(Square-root imbedded cubature particle filter,SICPF)算法。该算法采用平方根嵌入式容积卡尔曼滤波(Square-root imbedded cubature Kalman filter,SICKF)产生重要性密度函数。该算法融合了最新的观测信息,由其产生的重要性密度函数更接近系统状态的真实后验概率分布,最后采用经典非线性、非高斯状态模型对该文算法的性能进行仿真测试。仿真结果表明:SICPF算法的估计误差约为扩展粒子滤波(Extended particle filter,EPF)算法1/4、无迹粒子滤波(Unscented particle filter,UPF)算法误差的2/3、容积粒子滤波(Cubature particle filter,CPF)算法的估计误差的3/4,SICPF算法是一种有效的滤波算法。 展开更多
关键词 非线性非高斯 粒子滤波 重要性密度函数 平方根嵌入式容积卡尔曼滤波 扩展粒子滤波 无迹粒子滤波 容积粒子滤波
下载PDF
平方根球形无味卡尔曼滤波机载无源定位算法
17
作者 裴畔 丁永红 马铁华 《中国测试》 CAS 北大核心 2017年第2期93-97,共5页
针对机载无源定位系统中,初始值误差和数值的舍入计算对无味卡尔曼滤波(un-scented Kalman filtering,UKF)算法的定位精度和滤波稳定性影响较大的问题,提出一种基于平方根球形无味的卡尔曼滤波算法(square root spherical unscented Kal... 针对机载无源定位系统中,初始值误差和数值的舍入计算对无味卡尔曼滤波(un-scented Kalman filtering,UKF)算法的定位精度和滤波稳定性影响较大的问题,提出一种基于平方根球形无味的卡尔曼滤波算法(square root spherical unscented Kalman filter,Sqrt-UKFST)。该方法以单位超球体球面无味变换为基础,通过减少采样点数目和球面半径,保证所有采样点在一个单位超球体上,从而提高算法对初始值的鲁棒性,并采用平方根滤波提高算法的数值稳定性。对该算法进行100次Monte-Carlo实验,仿真结果表明,Sqrt-UKFST算法收敛速度快,滤波性能稳定;当初始状态估计误差较大时,Sqrt-UKFST算法的定位精度保持在30%以内,提高系统对初始值的鲁棒性。 展开更多
关键词 机载无源定位 算法精度 平方根球形无味卡尔曼滤波 球面无味变换 鲁棒性 稳定性
下载PDF
基于无迹卡尔曼滤波的液体火箭发动机故障诊断
18
作者 许亮 芦弘炜 +1 位作者 王闻浩 薛薇 《载人航天》 CSCD 北大核心 2024年第4期516-525,共10页
针对火箭发动机故障数据难以获取的问题,设计了一种基于无迹卡尔曼滤波(UKF)的液体火箭发动机故障诊断算法。采用MATLAB/Simulink平台搭建了液体火箭发动机故障仿真模型,实现发动机正常运行仿真和预燃室氧阀门故障、氧主泵汽蚀、氢主涡... 针对火箭发动机故障数据难以获取的问题,设计了一种基于无迹卡尔曼滤波(UKF)的液体火箭发动机故障诊断算法。采用MATLAB/Simulink平台搭建了液体火箭发动机故障仿真模型,实现发动机正常运行仿真和预燃室氧阀门故障、氧主泵汽蚀、氢主涡轮叶片脱落3种故障仿真。将正常运行仿真值与设计值、试车值进行了对比。结果表明:模型参数与设计值最大误差不超过5%,仿真精度较高;仿真参数变化趋势与试车值基本一致,且稳态值误差较小。使用UKF算法求取发动机正常运行阈值范围,并对故障序列进行滤波处理,若故障数据连续3次超出阈值区间,且在0.1 s内有至少2个涡轮泵发出报警,则判定故障发生,故障发生时间为第2个涡轮泵报警时间。使用设计算法对3种故障序列进行诊断,判定故障发生时间分别为20.08 s、20.05 s、20.18 s。相比于传统红线阈值算法,文中所设计算法响应更为及时,且误报率较低。 展开更多
关键词 故障诊断 液体火箭发动机 无迹卡尔曼滤波 故障仿真 红线阈值算法
下载PDF
基于目标优化和卡尔曼滤波的SOC估算方法
19
作者 邢展 王建宇 +2 位作者 闫晓钰 罗玉珺 涂燕 《电源技术》 北大核心 2025年第1期176-183,共8页
准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法... 准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。 展开更多
关键词 蓄电池 SOC在线估算 蜣螂优化算法 自适应无迹卡尔曼滤波
下载PDF
基于自适应无迹卡尔曼滤波算法的多股螺旋弹簧动态响应模型参数辨识和分析 被引量:7
20
作者 丁传俊 张相炎 刘宁 《兵工学报》 EI CAS CSCD 北大核心 2018年第1期28-37,共10页
针对传统方法在辨识多股螺旋弹簧(以下简称多股簧)非线性响应模型参数时效率较低、精度较差的问题,提出带噪声统计估计器的自适应无迹卡尔曼滤波(AUKF)算法。该算法通过对多股簧试验数据中的量测(过程)噪声进行递推和估计,能够确保非线... 针对传统方法在辨识多股螺旋弹簧(以下简称多股簧)非线性响应模型参数时效率较低、精度较差的问题,提出带噪声统计估计器的自适应无迹卡尔曼滤波(AUKF)算法。该算法通过对多股簧试验数据中的量测(过程)噪声进行递推和估计,能够确保非线性模型参数辨识的收敛性;结合多股簧动态试验对该算法进行检验。研究结果表明:即使在量测噪声级别较高的情况下,AUKF算法也可以准确地求出多股簧的动力学模型参数;在预测多股簧动态响应过程中,若预测振幅和参数辨识所用振幅相差太大则会导致较大的预测误差;当加载速度变化时,多股簧动力学模型中的迟滞部分参数基本不变,但0阶非线性刚度系数和非线性放大因子变化较大。 展开更多
关键词 多股螺旋弹簧 参数辨识 非线性迟滞模型 自适应无迹卡尔曼滤波算法
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部